

Program and Course Structure

Department of Electrical and Electronics Engineering

M.Tech in Electrical and Electronics Engineering

Program Code: SET0407 2020-21

1. Standard Structure of the Program at University Level

1.1 Vision, Mission and Core Values of the University

Vision of the University

To serve the society by being a global University of higher learning in pursuit of academic excellence, innovation and nurturing entrepreneurship.

Mission of the University

- 1. Transformative educational experience
- 2. Enrichment by educational initiatives that encourage global outlook
- 3. Develop research, support disruptive innovations and accelerate entrepreneurship

Core Values

4. Seeking beyond boundaries

- Integrity
- Leadership
- Diversity
- Community

Vision of the School

To become a globally acclaimed institution of higher learning in engineering and technology promoting excellence in research, innovation and entrepreneurship

Mission of the School

- 1. To impart quality education with strong industry & academic connectivity in the expanding fields of Engineering and Technology in a conductive and enriching learning environment.
- 2. To product technocrats equipped with technical & soft skills and experiential learning required to stay current with the modern tools in emerging technologies to fulfill professional responsibilities and uphold ethical values.
- 3. To inculcate a culture of interdisciplinary research, innovation and entrepreneurship to provide sustainable solutions to meet the growing challenges and societal needs.
- 4. To foster collaborative learning and to play adaptive leadership role in professional career and pursuit of higher education through effective mentoring and counseling.

1.2.1 Vision and Mission of the Department

Vision of the Department of Electrical and Electronics Engineering

To establish itself as an international acclaimed destination of academic excellence in the discipline of Electrical and Electronics Engineering, socially relevant interdisciplinary research, nurturing innovation and entrepreneurship culture.

Mission of the Department Electrical and Electronics Engineering

- i) To produce knowledgeable and skilled professionals in the wide range of government, private and public sector in the field of power sector and automation.
- ii) To provide conducive environment for research and development in the field of electrical and automation, that enhances the competitiveness of the graduates, for higher studies and finding sustainable solution for the society.
- iii) To encourage students through effective mentoring and counselling to perform duties and responsibilities with human values in professional career and social life.

iv) To foster a culture for multi- and interdisciplinary research, innovations and entrepreneurship by promoting collaborations and tie-ups with industry and reputed research organization across the globe.

1.3 Programme Educational Objectives (PEO)

1.3.1 Writing Programme Educational Objectives (PEO)

The Educational Objectives of UG Program in Electrical and Electronics Engineering are:

PEO1: The Graduands will establish themselves with knowledge and technical skill to match the need of modern industries of power sector and automation.

PEO2 : Graduates will be motivated for research and higher education and support their entrepreneurial learning.

PEO3 : Graduates will demonstrate their the communication skills and critical reasoning skills to perform responsibilities ethically for the sustainable development of the society.

PEO4: The Graduands will be able to learn and adopt new technologies in a multi- and interdisciplinary work environment for innovative solutions for real world problems

1.3.2 Map PEOs with School Mission Statements:

No.	PEO statement	School missions			
		Mission statement	Mission statement	Mission	Mission
		1	2	statement 3	statement 4
I	PEO1: The Graduands will establish themselves with knowledge and technical skill to match the need of modern industries of power sector and automation.	3	2	2	3
2	PEO2 : Graduates will be motivated for research and higher education and support their entrepreneurial learning.	2	3	3	2
3	PEO3 : Graduates will demonstrate their the communication skills and critical reasoning skills to perform responsibilities ethically for the sustainable development of the society.	2	3	2	3
4	PEO4 : The Graduands will be able to learn and adopt new technologies in a multi- and interdisciplinary work environment for innovative solutions for real world problems	2	3	2	2

1.3.2.1 Map PEOs with Department Mission Statements:

DEPARTMENT PEOs DEPT OF EEE MISSION STATEMENTS	1. The Graduands will establish themselves with knowledge and technical skill to match the need of modern industries of power sector and automation.	2. Graduates will be motivated for research and higher education and support their entrepreneurial learning.	3. Graduates will demonstrate their the communication skills and critical reasoning skills to perform responsibilities ethically for the sustainable development of the society.	4. The Graduands will be able to learn and adopt new technologies in a multi- and interdisciplinary work environment for innovative solutions for real world problems.	
1. To produce knowledgeable and skilled professionals in the wide range of government, private and public sector in the field of power sector and automation	3	3	2	3	11/12
2. To provide conducive environment for research and development in the field of electrical and automation, that enhances the competitiveness of the graduates, for higher studies and finding sustainable solution for the society	2	3	2	3	10/12
3 To encourage students through effective mentoring and counselling to perform duties and responsibilities with human values in professional career and social life.	2	2	3	3	10/12
4: To foster a culture for multi- and interdisciplinary research, innovations and entrepreneurship by promoting collaborations and tie-ups with industry and reputed research organization across the globe.	2	2	2	3	9/12
1.	9/12 Slight (Low) 2. 1	10/12 Moderate (Mediu	9/12	12/12 antial (High)	83.3%

1.3.3 Program Outcomes (PO's)

- PO1: **Engineering knowledge**: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- PO2: **Problem analysis**: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- PO3: **Design/development of solutions**: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- PO4: **Conduct investigations of complex problems**: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- PO5: **Modern tool usage**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.
- PO6: **Environment and sustainability**: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- PO7: **Communication**: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- PO8: Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PSOs for M.Tech in EEE

PSO1: To be able to critically investigate complex power system scenarios and arrive at possible solutions, by applying the acquired theoretical and practical knowledge.

PSO2: To be able to identify optimal solutions for improvising power transfer capability, enhancing power quality and reliability.

PSO4: To be able to implement multidisciplinary knowledge, so as provide solutions to

automation across various industries.

PSO3: To be able to integrate automation products from different manufacturers based on common standards.

Mapping	PEO1	PEO2	PEO3	PEO4	PEO5
PO1	2	2	1	-	1
PO2	-	3	-	-	1
PO3	3	3	2	2	3
PO4	3	2	2	1	1
PO5	2	3	1	-	2
PO6	2	1	1	3	1
PO7	-	1	2	3	3
PO8	-	2	-	-	2
PSO1	3	2	-	1	-
PSO2	3	2	-	2	-
PSO3	3	2	-	1	-
PSO4	3	2	-	1	-

1.3.4 Mapping of Program Outcome Vs Program Educational Objectives

1. Slight (Low)

2. Moderate (Medium)

3.Substantial(high)

M.Tech in Electrical and Electronics Engineering <u>COURSE STRUCTURE</u>

Department of Electrical and Electronics Engineering M.TECH in Electrical and Electronics Engineering Course Structure for batches admitted in session 2019-21 and onwards															
Semester		Courses										Т	Р	Weekly Contact	Credits
Ι	Optimization Techniques in Engineering (3-1-0) 4	MEMS, Smart Sensors and WSN (3- 0-2) 4	Elective 1 (3-0-2) 4	Elective 2 (3-1-0) 4	Elective 3 (3-0-0) 3				5	2	15	2	4	21	19
Π	PLC and SCADA(3-0- 2) 4	Elective 4 (3- 1-0) 4	Elective5 (3-1-0)4	Elective 6 (3-0-2) 4	Elective 7 (3-0-0) 3	Elective 8 (3-0-0) 3	Community Connect (0- 0-4) 2	Research Methodolog y (0-0-4) 2	6	4	18	2	12	32	26
III	Seminar (0- 0-4) 2	Dissertation - 1 (0-0-20) 10							0	2	0	0	24	24	12
IV	Dissertation -II (0-0-32) 16 Dissertation 0 1 0 0 32 32												16		
TOTAL CREDITS											73				

List (Of Elective	T	
	With Specialization in Power Systems	With Specialization in Instrumentation and Control	With Specialization in Industrial Automation
1	Extra High Voltage Transmission	Advanced Control Engineering And Controllers	Advanced Control Engineering And Controllers
2	Modeling & Analysis Of Power System	Smart Power Grid And Micro grid	Smart Power Grid And Micro grid
3	Power Systems Operation & Control	Biomedical Instrumentation	Electrical Drives
4	Power System Reliability Assessment	Intelligent Actuators And Mechatronics	Intelligent Actuators And Mechatronics
5	Smart Power Grid And Micro grid	Virtual Instrumentation	Virtual Instrumentation
6	FACTS Devices And Systems	Analog And Digital Signal Processing	Digital Signal Processing Techniques
7	Digital Relaying For Power Systems	Industrial Network Protocols And IoT	Industrial Network Protocols And IoT
8	Power Quality	Robotics And Industrial Robots	Robotics And Industrial Robots
9	Wind And Solar Energy Systems	Embedded Systems	Embedded Systems
10	Wireless Sensor Networks And Application	Industrial Instrumentation	Mechatronics of Robotics
11	Sustainable Energy	Analog And Digital Communication Techniques	Wind And Solar Energy Systems
12	Electrical And Hybrid Vehicles	Sustainable Energy	Electrical And Hybrid Vehicles
13	Distributed Generation Technology		

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4
MPS 114	2	2				2	1	3			1	
MPS 122	2	2					1				1	
MPS 104	2		1		3	2		2	1	2		1
MPS 152	3	2	1	1	2	-	-	-	-	1	1	2
MPS 117	3	3	2	3		2	3	2	1	1	1	3
MPS 123	2	2					3				1	
MPS 116	2	1	1	-	2	1	2	-	1	1	1	1.1
MPS 153	3	2	3						2	2	2	2
MPS 691	3	2	1	1	2	-	-	-	-	1	1	
MPS 693	3	3	2	3		2	3	2	1	1	1	
MPS 694	2	2	2	2					2	2	1	1
MIA111	2		1		3	2		2	1	2		2
MIA113	2	2	_			-	1	-	_		1	3
MIA112	2	2					3				1	
MIA114	3	2	1	1	2	-	-	-	-	1	1	-
MIA115	3	3	2	1	2	1	1	1	2	2	1	2
MIA117	2	2	2	2	2	2	1	-	3	3	2	3
MIA151	3	2	1	1		-		-	3	2	1	2
MIC151	2	1	3	2	2	1	1	1	2	2	3	2

3.2 Program Outcome Vs Courses Mapping Table

SET	۲ -	Batch : 2019-21	
Prog	gram: M.Tech	Current Academic Year: 2019-21	
`	nch: EEE	Semester : I	
1	Course Code	MIA113	
2	Course Title	Intelligent Actuators and Mechatronics	
3	Credits	3	
4	Contact	3-0-0	
	Hours		
	(L-T-P)		
	Course Status	Department Elective	
5	Course	• Discussing of basic components of actuators and mechatr	onics
	Objective	• Discussing of electronics and digital circuits concepts of t	
			ne subject
		• Explaining concept of intelligent and smart system	
		• Discussing of interfacing concepts of mechatronics system	
		• Giving case studies and exploring knowledge on designin	g
6	Course	CO 1: Getting knowledge on basic components of actuators	and
	Outcomes	mechatronics	
		CO 2: Exploring knowledge and getting design concepts of	circuits
		CO 3: Identifying concepts smart and intelligent on mechatr	onics systems
		CO 4: Able to design of interfacing circuits for the subject	
		CO 5: Able to design of tailor-made systems	
7	Course	The field of mechatronics has braddened the scope of the tra	
	Description	of elctromechanics. The subject is made to know modern tre	
		mechatronics system, hybrid of different engineerings, stand	lalone
		mechatronics systems.	1
8	Outline syllabu		CO Mapping
	Unit 1	Introduction	
	Α	Definitions: Mechatronics & actuator; Overview of sensors, current & voltage sources; Grounding	CO1
	В	Solenoids, relays, electrical motors for actuators	CO1
	С	Basics of open loop and closed loop systems , block diagram of	CO1
		mechatronics system ; Scope of the course	
	Unit 2	Overview of Analog and Digital Electronics	CO2
	А	Active electronic devices for mechatroics, basics of operation	
		amplifiers and instrumentation amplifiers	
	В	Display systems, measurement systems, testing and calibration	CO2
	C	Combination logic and logic classes; Flip-flops and their	CO2
		applications; Microcontroller concepts	
	Unit 3	Smart and Intelligent Actuators	
	А	Definitions: Smart and intelligent actuators; Architecture and	CO3
	D	operation of smart actuator	
	B	Intelligent actuator without feedback sensor in detail	CO3
	C	Intelligent actuator with feedback sensor in detail	CO3
	Unit 4	Mechanical-Electronic Interfacing	
	А	Concept of three-state (tri-state) outputs; Interfacing of	CO4
		pushbutton, keyboard and sensors	

В	Interfacing of re motors to micro	•	DC, AC motors and special	CO4					
С	Selecting of mo	tor for actuators	5	CO4					
Unit 5	Case studies &	Case studies & Design Exercise							
А	Case study 1: N	Case study 1: Mechatronic design of a coin counter; Case study Case study 2: Mechatronics for conveyor based material handling system							
В	Case study 2: N handling systen								
С	Design exercise	on mechatronic	system	CO5					
Mode of examination	Theory								
Weightage	CA	MTE	ETE						
Distribution	30%	20%	50%						
Text book/s*		David G, Alciatore et al., "Introduction to Mechatronics and Measurement Systems", Tata McGraw Hill, 2003 1. W.Bolton, "Mechatronics ", Pearson Education, 2005							
Other	1. W.Bolte								
References	2. Godfre	y C. Onwubolu, '	"Mechatronics", Elsevier, 2005						

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4
CO113.1	3	1	1	-	1	-	-	1	3	3	-	3
CO113.2	2	3	2	3	-	2	1	1	3	3	2	3
CO113.3	2	1	3	3	2	3	1	2	3	2	1	2
CO113.4	1	2	1	-	2	1	-	1	3	2	2	2
CO113.5	2	1	3	1	-	2	-	2	3	2	-	2

Sch	ool: SET	Batch : 2019-21	
Pro	gram: M.Tech	Current Academic Year: 2019-21	
Bra	nch: EEE/EE	Semester: 1	
1	Course Code	MIA112	
2	Course Title	MEMS, Smart Sensors and WSN	
3	Credits	3	
4	Contact Hours (L-T-P)	3-0-0	
	Course Status	Compulsory /Elective/Open Elective	
5	Course	To provide students with:	
	Objective	1. basic principles and techniques of MEMS and Smart Sen	
		2. knowledge of various fabrication and machining process	of MEMS along with
		its benefits in relation to applications	
		3. Knowledge in wireless sensor networks and to apply this	knowledge in various
		industrial application like environmental monitoring, stru	ctural health and
		greenhouse monitoring	
6	Course	CO1: To be able to understand architecture of smart sensors alor	ng with differences
	Outcomes	among smart, intelligent and network sensors.	
		CO2: To be familiar with the important concepts applicable	e to MEMS and
		their fabrication	
		CO3: To be able to select and apply the MEMS and smart sensors	to different
		applications.	
		CO4: To understand principles of wireless sensor networks and c	lifferentiate among
		various wireless network protocols .	
		CO5: To apply principles of WSN in various industrial, environme applications.	ntal and societal
7	Course		
	Description	This course is aimed at equipping students with basic knowledge	on of
		MEMS (Micro electro Mechanical System), Smart sensor and its v	
		techniques. This course also enables the student with appropriat	e knowledge of
		Wireless sensor network and its applications in industry.	
8	Outline syllabus		CO Mapping
	Unit 1	Basics of MEMS and Smart Sensors	
	A	Overview of measurement system, transducers, sensors,	CO1
		actuators and signal conditioners	
	В	Definition, working principle and construction of MEMS	CO1
	C	Definition and architecture of smart sensor; different levels	CO1
		of integration in smart sensors; Differences between smart,	
		intelligent and network sensors; Advantages of smart	
		sensors	
	Unit 2	MEMS and Smart Sensor Technologies	
	A	Micro-machining processes: materials for micro-	CO2
		machining, wafer bonding, bulk and surface	
		micromachining	
	В	IC Technologies: thick film, thin film technologies	CO2
	С	Monolithic IC technology	CO2
	Unit 3	Case studies of MEMS and Smart Sensors	
	А	Principles, characteristics and constructional details of	CO3

		MEMS based	smart acceler	ation and pressure sensors							
•	В	Principle, char	racteristics ar	d constructional details of a	CO3						
		smart tempera									
	С	-		nd constructional details of a	CO3						
		smart humidit	smart humidity sensor								
	Unit 4		Wireless Sensor Network (WSN)								
	А		-	SN, Network topologies; seven-	CO4						
				unication system							
	В			rotocol, Merits of Zigbee over	CO4						
				Bluetooth for WSN,							
		architecture of									
	С			k (SAN) - homogeneous and	CO4						
		heterogeneous									
		WSN Applic	ations in Ind	lustry							
	Unit 5										
	А	_		Case studies on WSN	CO5						
		application: E									
	В			uctural health and Equipment	CO5						
		health monitor									
	С	Greenhouse m	-		CO5						
	Mode of	Theory/Jury/P	ractical/Viva								
	examination										
	Weightage	CA	MTE	ETE							
	Distribution	30%	20%	50%							
	Text book/s*			and Transducers", Prentice-Holl,							
		2 nd Edition,									
		2 Randy Fran	ık, "Understa	anding Smart Sensors", Artech							
		House, 2 nd E	Edition, 2000.								
		3 E.H. Calla	away, "Wi	reless Sensor Networks :							
		Architecture	and Protoco	ls"							
	Other	1. H.K.	Verma e-mo	nograph on "Smart Sensors", at							
	References			Chapter 1 – Basics of Smart							
		-		Sensor Technologies, Chapter 3							
		-									
		<u>– Case Studies</u> 2. H.K. Ver									
		nograph on "WSN", at									
		Network. Cl	<u>www.profhkverma.info</u> , <u>Chapter 1 – Wireless Sensor</u> <u>Network</u> , Chapter 2 – Wireless Sensor Node, <u>Chapter 3 –</u>								
			-	Sensor Networks.							

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4
CO112.1	3	1	-	2	1	-	-	1	2	3	-	-
CO112.2	3	1	-	2	1	-	-	2	2	3	-	-
CO112.3	1	2	3	2	2	1	-	2	3	-	-	1
CO112.4	3	1	-	2	1	-	-	1	2	3	-	-
CO112.5	1	2	3	2	2	1	-	2	3	-	2	1

Scho	ool: SET	Batch : 2019-21	
	gram: M.Tech	Current Academic Year: 2019-21	
	nch: EEE/EE	Semester: 1	
1	Course Code	MIA117	
2	Course Title	Advanced Control Engineering and Controllers	
3	Credits	3	
4	Contact Hours	3-0-0	
	(L-T-P)		
	Course Status	Compulsory	
5	Course	To provide students with:	
	Objective	1. some advanced concepts in Control Systems Engineering and the	neir
		applications	
		2. A theoretical understanding of advanced linear control systems	and strategies,
		including the principles of digital control.	
		3 understanding of performing stability analysis of digital control	-
		4. knowledge of Analog controller, computer based controller and	d intelligent
6	Course	controller After completion of this course students will be able to:	
0	Outcomes	CO1: Understand advanced concepts and approaches to control s	vstem designs
	Outcomes	CO2: Understand industrial controllers of continuous and disconti	
		and advanced control concepts of cascaded and feed forward cor	
		CO 3design, develop and operate analog controllers, both electro	
		pneumatic types.	
		CO4: Design develop and operate computer based control system	IS.
		CO5Understand simulate and design artificial intelligence based of	control system.
7	Course	This course introduces systematic approaches to the design and a	inalysis of
	Description	advance control systems for industrial applications.	
8	Outline syllabus		CO Mapping
	Unit 1	Overview of Control System	
	A	Elements of control systems; Concept of open loop and	CO1
		closed loop systems; Examples and application of open loop	
		and closed loop systems	
	В	Brief idea of multivariable control systems; Concept of	CO1
		stability and necessary conditions, Routh-Hurwitz criteria and	
		limitations. Correlation between time and frequency	
		responses	<u> </u>
	С	State variable modelling of linear discrete systems,	CO1
		controllability and observability; Nonlinear control systems;	
		Fundamentals-common nonlinearities (saturation, dead-	
	II:4 0	zone, relay, on-off nonlinearity, backlash, hysteresis	
	Unit 2	Controller Principles	CO2
	Α	Process Characteristics; Control system parameters: error,	CO2
		variable range, control parameter range, control lag, dead	
	В	time, cycling	CO2
	D	Discontinuous controller modes: two-position mode, multi- position mode; Continuous controller modes	
	С	proportional, integral and derivative control modes;	CO2
	C	proportional, integral and derivative control modes;	002

	proportiona Cascaded ar	l-derivative (Pl id feed-forwar	: proportional-integral (PI), D) and three mode controller (PI d controls	D);		
Unit 3	Analog Cont					
А		; General feat		CO3		
В			ror detector, single mode and	CO3		
_		node controlle				
С		•	portional, proportional-integral	CO3		
			e (PD) and PID controller.			
Unit 4		ased Control				
А		; Digital applic	ations: alarms, two-position	CO4		
	control					
B		ased controlle		CO4		
С		-	oftware requirements	CO4		
Unit 5		Control Systen				
А		•	: Fuzzy set theory, basic fuzzy se			
			, fuzzy logic controller, methods	of		
		on of member		005		
В			n, fuzzy rule base, design of fuzzy	CO5		
<u> </u>	logic control system.					
C		Neural-network control system :Artificial neural networks, operation of a single artificial neuron, network architecture,				
	-	-	s, back-propagation, Neurofuzzy			
	control	leural network	s, back-propagation, Neuroruzzy	/		
	Control					
Mode of	Theory/Jury	/Practical/Viv	Za			
examination	Theory, sur y		u			
Weightage	CA	MTE	ETE			
Distribution	30%	20%	50%			
Text book/s*		I				
	1. Curtis D. J	ohnson "Proce	ess Control Instrumentation			
		"8th Edition Pe				
	2. I.J. Nagrat	h and M. Gop	al, "Control Systems Engineering	. <i>n</i> 1		
	4th Edition, N	New Age Interr	national Publishers.			
Other		-				
References	1. S.N. Sivan	andam and S.I	N. Deepa, "Principles of soft			
		Wiley India P	• • •			
		-	. Vijayalakshmi Pai, " Neural			
	-		Genetic Algorithms," PHI Pvt.			
	Limited.	-, -, -, -, -, -, -, -, -, -, -, -, -, -				

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4
CO117.1	3	2	1	1	1	-	-	-	-	-	2	-
CO117.2	3	2	1	1	1	-	-	-	-	-	2	-
CO117.3	2	2	3	2	2	-	-	-	3	3	1	1
CO117.4	2	2	3	2	2	-	-	-	3	3	2	2
CO117.5	2	2	3	2	2	-	-	-	3	3	3	3

I&C		Current Academic Year: 2019-21 Semester: II								
Branc I&C 1 (ch: I&A and	Semester: II								
I&C		Semester: II								
1 (Course Code	Semester: 11								
		MIC101								
2 0	Course Title	Analog and Digital Signal Processing								
	Credits	4								
	Contact	3-1-0								
H	Hours									
((L-T-P)									
	Course	Compulsory								
	Status									
	Course Objective	To provide the student with								
		1. Concepts so as to categorise various types of Sign	•							
		2. İn-depth knowledge so that implemention of circ	uits related to linear							
		applications of the opamp are acheivable.								
		3. Basic understanding for the implementation of opamp.	f active filters using							
		4. Strong foundation for designing of Digital Syste	ems both FIR and IIR							
		and analyses of systems using DFT and FFT.								
	Course Outcomes	CO1: To categorise the various types of signals and sys	stems and to perform							
	Jucomes	various mathematical operations on signals.								
		CO2: To differentiate and design various applications of op	p-amp.							
		CO3: To design and implement various types of digital filt	ers.							
		CO4: To do frequency analysis using DFT and FFT.								
	Course Description	The course content of this subject includes introduction of It also covers the various linear and nonlinear applications the content elaborates the designing and implementation of with DFT and FFT as the main frequency tool.	of the opamp. Also							
8 (Outline syllab	us	CO Mapping							
	Unit 1	Introduction to Signals and Systems	CO1							
A	A	Continuous-time and discrete-time signals and their								
		mathematical representation, analog and digital signals,								
		analog signal processing (ASP) and digital signal								
		processing (DSP)								
E	В	Signal, Continuous time signals (CT signals), discrete								
		time signals (DT signals) - Step, Ramp, Pulse, Impulse,								

	Exponential, Classification of CT and DT signals -	
	periodic and aperiodic, Even and Odd, Power and Energy	
	Invertible and Non-invertible, Deterministic and Random	
С	System, Basic Types of Systems- Causal and Non-	
	causal, Stable and Unstable, Static and Dynamic. Linear	
	and Non-Linear Time Variant and Time Invariant, Basic	
	operations on signals - addition, multiplication, shifting,	
	folding, etc.	
Unit 2	Linear Applications of Opamp	CO2
A	Operational amplifier: block diagram, equivalent circuit,	
	ideal and practical operational amplifier; inverting and	
	non-inverting amplifier circuits	
В	Practical Integrator and Differentiator circuits,	
С	Summing and differential amplifier circuits;	
Unit 3	Instrumentation amplifier Opamp based Filters	CO2
A A	Passive and active filters, their comparison; frequency	02
	response of low- pass, high- pass ,band- pass, band- stop	
В	and notch filters and their use in instrumentation;Active filters: Basic low- pass filter circuit , first and	
	second order low- pass and high- pass Butterworth filters	
С	Band- pass filter, Band reject (notch) filter, Concept of	
	higher order filter realization	
Unit 4	Digital Filters	CO3
А	Design of Digital Filters Design of FIR Filters:	
	Symmetric and Anti-symmetric FIR Filters. Design of	
	Linear phase FIR Filter using Windows, Gibbs	
	phenomenon.	
В	Design of IIR Filters: Design by Approximation of	
	Derivatives, Impulse Invariance and by Bilinear	
	Transformation.	
С	Transformation.Direct form-1 and form-2 realizations, Cascade and	
С		
С	Direct form-1 and form-2 realizations, Cascade and	

А	Digital Fourier	transform (DF	Т),	
В				
С	Fast Fourier tra	unsform (FFT),	FFT algorithm for frequency	
	analysis.			
Mode of	Theory			
examination				
Weightage	CA	MTE	ETE	
Distribution	30%	20%	50%	
Text book/s*	Circuits" Pearso 2. Sedra and Smi University Press. 3. G. Proakis d	n Education, 4th th, "Microelectro and D.G. Manol	p-Amp and Linear Integrated Edition onic Circuits", 4th Edition, Oxford akis, "Digital Signal Processing, cations", Pearson Education,	
Other References	Signal Processing 2.Michael Jacob, Circuits, PHI,2 nd	g", PHI 1999 "Applications an Edn.2006 In and Arvin C	and J. R. Buck, "Discrete Time nd Design with Analog Integrated Grabel, "Microelectronics", 2 nd	

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4
CO101.1	3	1	1	-	-	-	-	-	-	-	-	-
CO101.2	2	2	3	3	2	-	-	-	2	2	-	2
CO101.3	2	3	3	2	3	-	-	-	3	2	-	2
CO101.4	3	3	3	3	2	-	-	-	-	1	-	1

Departmental Electives:

Sch	ool:	Batch : 2019-21
Prog	gram:	Current Academic Year: 2019-21
Bra	nch: EEE	Semester:
1	Course Code	MIC008
2	Course Title	Virtual Instrumentation
3	Credits	3
4	Contact Hours (L-T-P)	3-0-0
	Course Status	Elective/Open Elective
5	Course Objective	 Introduction to the various models of Virtual Instruments, their comparison with traditional instruments and major application areas of VI. Introduction to basics of LabVIEW VI Programming techniques like loops, arrays, clusters, plotting and Strings and files. Basics of signal conditioning techniques along with DAQ hardware and software and various signal processing techniques available in LABVIEW. Advanced concepts in LabVIEW with main concepts of real time applications in Image acquisition and Motion control. Building of Virtual Instruments with various types of controls and indicators. Configuring DAQ card and acquisition of real time signals from sources and sensors. Simulate a signal in LabVIEW and generate a virtual source using DAQ cards.
6	Course Outcomes	CO1: Understand various models and areas of application of Virtual Instrumentation. CO2: Understand various components of LabVIEW required for the development of VI. CO3: Understand and apply various programming functions of LabVIEW like loops, arrays, clusters and file I/Os for building of simple Virtual instruments. CO4: Understand the concepts of Data acquisition hardware and software and to apply basic signal processing techniques available in LabVIEW. CO5: Able build VI for simulated and real time applications.
7	Course Description	The course content of this subject includes an introduction to graphical system design. This course also focuses on introduction to LabVIEW which extensively elaborate the Graphical programming language .In Unit 3, building of VI by using loops, arrays, clusters etc. have been dealt with. Use of strings and I/O are also elaborated in this course. Data acquisition and various signal processing techniques are also covered in this course. Two real

		time applicat		control and Image acquisition	n by using LabVIEW			
8	Outling gullaby		borated in ti	lis course.	CO Monning			
0	Outline syllabu				CO Mapping			
	Unit 1	Introduction	1 .	odel - design model, prototype	CO1			
	A	1 .						
	В	model, deploy		al instrument versus traditional				
	В	instrument, Ha						
	С	,	ing LabVIEW; Graphical					
	C	programming a	•					
	Unit 2		-	ising LabVIEW	CO2			
	A A		<u> </u>	Components of VI Software - From				
	A			am windows, Icon /connector pan				
	В			oolbars, Palettes, Front panel				
	D			ck diagram – terminals, nodes,				
		functions	ulcators, Dio	ek diagram – terminais, nodes,				
	С		ess VIs and V	Is, wires; Data types, Data flow				
		program		15, whes, Data types, Data 110w				
	Unit 3	Programming	Techniques		CO3,CO5			
	A	0	<u> </u>	ab View; Building VI front panel				
		and block diag	ram					
	В	·		s, Local and Global variables in				
		LabVIEW, Ar						
	С			version between arrays and cluster	·S,			
		Plotting data in						
	Unit 4	Data Acquisit	CO4					
	А	Transducers an	Fransducers and Signal conditioning, sampling and aliasing					
	В	Basics of DAC	Basics of DAQ hardware and software, DAQ modules and					
		drivers for bui						
	С	Fourier transfe	orms; Power s	pectrum, Correlation methods;				
		Windowing &						
	Unit 5	Advanced co	ncepts in L	abVIEW	CO5,CO3,CO4			
	А	Data Socket, T	CP/IP VI's s	ynchronization				
	В	Serial interface	e buses - RS 2	232, RS485,USB				
	С	Concepts of re	al time syster	ns; Image acquisition; Motion				
		control	·					
	Mode of	Theory/Jury/	Practical/Viv	/a				
	examination							
	Weightage	CA	MTE	ETE				
	Distribution	30%	20%	50%				
	Text book/s*			rtual Instrumentation and				
		2. Jovitha LABV						
	Other	1. C.L. Clar	rk, "LabVIEV	V Digital Signal Processing", TM	H			
	References	Publishing Con						
		-		for DAQ Modules, Advantech an	bd			
			al Instrument	-	iu			
				info: Chapter 2: Technologies/				
		Protoc	ois for Wired	Sensor Network				

5. NI USER MANUAL	
http://www.ni.com/pdf/manuals/376445b.pdf	
5. www.ni.com	

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4
CO336.1	-	2	1	1	-	-	2	-	-	1	-	1
CO336.2	3	2	1	2	3	-	1	-	3	1	-	1
CO336.3	3	2	3	2	3	-	2	2	3	3	-	2
CO336.4	-	2	2	2	1	-	2	1	-	3	-	2
CO336.5	1	3	3	2	3	-	2	2	3	3	-	2

Scho	ol: SET	Batch : 2019-21					
Prog	ram: M.Tech	Current Academic Year: 2019-21					
)	ch: EEE/EE	Semester: 1I					
1	Course Code	MIA116					
2	Course Title	Industrial Network Protocols and IoT					
3	Credits	3					
4	Contact Hours	3-0-0					
	(L-T-P)						
	Course Status	Compulsory /Elective/Open Elective					
5	Course	To provide students with:					
	Objective	4. basic principles network communications and communication	n system models				
		and it's seven layers.					
		5. In depth knowledge of wired and wireless network protocols.					
		6. With the concept of IoT, M2M and IIoT along with typical app					
6	Course	CO1: To be able to understand the principles and types of data netwo	orks, especially				
	Outcomes	those used in industry.					
		CO2: have in-depth knowledge of industrial wired network protocols	and their				
		comparative merits and limitations.					
		CO3: To be able to apply Ethernet/IP protocol for industrial control ar	nd automation				
		applications.					
		CO4: To be able to select and apply wireless network protocol for inst	trument control				
		and automation for industrial and societal applications.	IoT systems for				
		CO5: To be able to apply the concepts of IoT and design and develop IoT systems fo industrial, societal, environmental and domestic applications.					
7	Course						
,	Description	This course is aimed at equipping students with in-depth knowledge v	various industrial				
	Desemption	network protocols, both wired and wireless types and a working know					
		concepts and systems.	C				
8	Outline syllabus		CO Mapping				
0	Unit 1	Basics					
	A	Principles of analog and digital communication and their	CO1				
		comparison; Asynchronous and synchronous data	COI				
		transmission; Simplex, half duplex and full duplex					
		transmissions; Baseband and broadband communications;					
		Signal transmission media: UTP, STP and coaxial cables,					
		PLCC, optical fibres and radio link;					
	В	Concept of LAN, PAN, MAN, WAN and Internet; Error	CO1				
		detection techniques: Parity check, check sum and CRC; LAN					
		topologies; Role of data communication and networks in					
		industrial automation; Field-level, control-level and enterprise-					
		level networks;					
	С	ISO's seven-layer OSI model: significance, scope, functions of	CO1				
		various layers; IEC's four-layer EPA model: significance,					
		functions of various layers; MAC techniques: reservation,					
		selection and contention techniques, polling, token passing,					
		CSMA/CD ; Special requirements of industrial network					
		protocols, list of important industrial wired and wireless					
		network protocols.					

Unit 2		l Wired–Netw					
A		-	l characteristic features of fieldbu	s, CO2			
	popular fi						
		0 0	nced-mode transmission in half duple				
	and full duplex modes, MAC protocol, merits and limitations. Modbus: Modbus protocol stack, Modbus address space and						
		ypes, data		or			
			ASCII and Modbus/TCP, formats				
	data requests and responses for main function codes (examples						
D			ons of Modbus.				
В			FF protocol stack; physical laye	-			
	1 0	• • ·	lata link layer: FDLC and FMA				
2		-	and limitations of FF.				
C			Protocol: DNP protocol stack, DN				
			ver and physical topologies, data lin				
			layer, application layer, merits an	ld			
TT 1/ A		s of DNP3.					
Unit 3		and Ethernet					
A			hysical layer, speed variants of	CO3			
			e format; TCP/IP model; Ethernet				
			er, bridge, router, gateway, hub and				
	· · · ·		tions of Ethernet for industrial				
D	application						
B	Common Industrial Protocol (CIP)						
C	Ethernet/IP: Adaption of Common Industrial Protocol (CIP)						
	to standard Ethernet, UDP, comparison between standard						
TT . •4 A	Ethernet and Ethernet /IP. Industrial Wireless Network Protocols						
Unit 4				0.01			
A	0	1	IEEE802.15.4, data rates, ISM-	CO4			
			d bandwidths, full-function and				
			, PAN coordinator, MAC protocol				
D		ransfer types	~~~~~				
B C		network topolo		CO4			
L		Industrial Io	vith Wi-Fi and Bluetooth.	CO4			
Unit 5	101 and	muustriai 101					
A	IoT conce	ept and definition	on; Technologies behind IoT;	CO5			
В	CISCO's	7-tier IoT re	ference model; Components of Ic	T CO5			
			ication; Relation between IoT, M2				
	and IIoT;	Modified OSI	model for IoT/M2M/IIoT;				
С	,		of IoT, M2M and IIoT.	CO5			
Mode of	-	ry/Practical/Vi					
examination		-					
Weightage	CA	MTE	ETE				
Distribution	30%	20%	50%				
Text book/s*			"Data and Computer Communications",				
2 2110 00010 0			Prentice Hall, 2007.				

	 Mini S. Thomas and John D. McDonald, "Power System SCADA and Smart Grids", CRC Press, 2015. Raj Kamal, "Internet of Things: Architecture and Design Principles", Mc Graw Hill Education, 2017.
Other	
References	 David Bailey and Edwin Wright, "Practical SCADA for Industry", Newnes, 2009. S.K. Singh, "Industrial Instrumentation and Control", Tata McGraw-Hill, 2003. M.M.S. Anand, "Electronic Instruments and Instrumentation Techniques", Prentice Hall, 2004. H.K. Verma, Sensor Networks, e-monograph at www.profhkverma.info, Chapter 2 – Wired Network Technologies/Protocols, Chapter 3 – Wireless Network Technologies/Protocols. H.K. Verma, SCADA, e-monograph at www.profhkverma.info, Chapter 4: Network Technologies Deployed in SCADA Systems.

COs	PO1	PO2	PO3	PO4	PO5	PO7	PO10	PO12	PSO1	PSO2	PSO3	PSO4
CO116.1	3	1	-	-	2	-	-	2	2	1	-	1
CO116.2	3	2	3	2	2	-	-	2	2	2	-	2
CO116.3	3	2	3	2	2	-	-	2	2	2	-	2
CO116.4	3	2	3	2	2	2	-	2	2	2	-	2
CO116.5	3	2	3	2	2	2	-	2	2	2	-	2

Sch	ool: SET	Batch : 2019-21	
Pro	gram: M.Tech	Current Academic Year: 2019-21	
	nch:EEE	Semester:II	
1	Course Code		
2	Course Title	Robotics and Industrial Robots	
3	Credits	3	
4	Contact	3-0-0	
	Hours		
	(L-T-P)		
	Course Status	Elective /Compusory	
5	Course	1.To understand the construction industrial robotics	
	Objective	2.To explore knowledge on selection of end-effectors of ro	botics
	-	3. To get knowledge of electrical drive systems of industria	
			Tiobolics
		4. To know types of sensors of industrial robotics	
		5.To understand of electrical and electronics interfacings	
		6.To study about applications of industrial robots	
6	Course	CO1: Basic construction of robot and robotics components	
	Outcomes	CO2: Understanding interfacing & building techniques of i	cobots
		CO3: Knowing different types of actuators of robotics	
		CO4: Getting knowledge of robotics sensors and transduce	
		CO5: Developing interfacing circuits for robotics application	ons
7	Course	This course gives coverage of robotics components, archite	acture and
/	Description	electronics interfacing circuits knowledge. Students can als	
	Description	programming of robotics using embedded C on open source	
		going through this subject. Finally students are able to do t	
		projects on robotics engineering	
8	Outline syllabu		CO Mapping
0	Unit 1	Introduction to Robotics and Motion Analysis	
	A	Historical background; Laws of robotics and robot definitions;	CO1
	В	Robotics systems and robot anatomy: Basic diagram, basic	CO1
	2	components and their uses; Specifications of robots.	001
	С	Position representation; Forward and reverse transformation:	CO1
		2 & 3 DOF	
	Unit 2	Pohot End Effectors, Pohot Drives and Actuators	
	A	Robot End-Effectors, Robot Drives and Actuators Classification of end-effectors; Mechanical grippers, Magnetic	CO2
	Α	grippers and vaccum grippers; Gripper force analysis.	
	В	Functions of drive systems; Electrical drives: DC, BLDC motors,	CO2,CO3
		AC motors, stepper motor, piezoelectric actuators;	
	С	Drive Mechanisms: rack and pinion, ball screws, gear trains	CO2
		and harmonic drive.	
	Unit 3	Sensors of Robotic System	
	A	Uses of sensors in robotics; Shaft Encoders (linear and	CO4
		rotational);	_
	В	Proximity Sensors (inductive and capacitive); Tactile sensors;	CO4
	С	Basic block diagram of vision systems of robotic system.	CO4
	Unit 4	Controlling Technologies of Industrial Robots	

А	Basics of PC int	terfacings		CO5				
В	Microcontrolle	CO5						
С	Robot languag	Robot languages and classification; Robot software.						
Unit 5	Industrial Rob	Industrial Robot Applications						
А	Material handl	ing robots		CO6				
В	Welding Robot	Welding Robots						
С	Assembling rol	Assembling robots						
Mode of	Theory							
examination								
Weightage	CA	MTE	ETE					
Distribution	30%	20%	50%					
Text book/s*	1.S.R. Deb and	1.S.R. Deb and S. Deb, "Robotics Technology and Flexible						
	Automation", S							
Other	2. Mikell P Gr	oover et al., "	Industrial Robotics", fifth print,					
References	McGraw Hill, S	pecial Indian Ec	lition, 2013					

Course Articulation Matrix

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4
CO1 115.1	2	2	3	2	-	-	-	2	1	2	1	2
CO2 115.2	2	3	3	2	3	1	1	3	2	2	2	2
CO3 115.3	3	3	2	2	3	1	1	3	3	3	3	2
CO4 115.4	3	2	2	3	2	1	-	2	2	3	2	2
CO5115.5	2	3	3	2	1	1	2	-	3	2	3	3

Sch	ool: SET	Batch : 2019-21							
Prog	gram: M.Tech	Current Academic Year: 2019-21							
	nch: EEE/EE	Semester: 1							
1	Course Code	MIA117							
2	Course Title	Advanced Control Engineering and Controllers							
3	Credits	3							
4	Contact Hours	3-0-0							
	(L-T-P)								
	Course Status	Compulsory							
5	Course	To provide students with:							
	Objective	1. some advanced concepts in Control Systems Engineering and the	neir						
		applications							
		2. A theoretical understanding of advanced linear control systems	and strategies,						
		including the principles of digital control.							
		3 understanding of performing stability analysis of digital control							
		4. knowledge of Analog controller, computer based controller and	d intelligent						
		controller							
6	Course	After completion of this course students will be able to:							
	Outcomes	CO1: Understand advanced concepts and approaches to control s							
		CO2: Understand industrial controllers of continuous and disconti							
		and advanced control concepts of cascaded and feed forward con							
		CO 3design, develop and operate analog controllers, both electro pneumatic types.							
		CO4: Design develop and operate computer based control system	s						
		CO5Understand simulate and design artificial intelligence based of							
7	Course	This course introduces systematic approaches to the design and a							
	Description	advance control systems for industrial applications.	,						
8	Outline syllabus		CO Mapping						
	Unit 1	Overview of Control System							
	А	Elements of control systems; Concept of open loop and	CO1						
		closed loop systems; Examples and application of open loop							
		and closed loop systems							
	В	Brief idea of multivariable control systems; Concept of	CO1						
		stability and necessary conditions, Routh-Hurwitz criteria and							
		limitations. Correlation between time and frequency							
		responses							
	С	State variable modelling of linear discrete systems,	CO1						
		controllability and observability; Nonlinear control systems;							
		Fundamentals-common nonlinearities (saturation, dead-							
		zone, relay, on-off nonlinearity, backlash, hysteresis							
	Unit 2	Controller Principles							
	А	Process Characteristics; Control system parameters: error,	CO2						
		variable range, control parameter range, control lag, dead							
		time, cycling							
	В	Discontinuous controller modes: two-position mode, multi-	CO2						
		position mode; Continuous controller modes							
	С	proportional, integral and derivative control modes;	CO2						
		Composite Control modes: proportional-integral (PI),							

	proportional-derivativ	e (PD) and three mode controller (PID);	
	Cascaded and feed-for	rward controls	
Unit 3	Analog Controllers		
Α	Introduction; General	features	CO3
В	Electronics controllers	: error detector, single mode and	CO3
	composite mode cont		
C		: proportional, proportional-integral	CO3
		vative (PD) and PID controller.	
Unit 4	Computer Based Cont		
А	Introduction; Digital a	pplications: alarms, two-position	CO4
	control		
В	Computer based contr		CO4
С	hardware configuration	ons, software requirements	CO4
Unit 5	Intelligent Control Sy	stems	
Α	Fuzzy-logic control sys	tem: Fuzzy set theory, basic fuzzy set	CO5
	operations, fuzzy relat		
	determination of mem		
В	Methods of defuzzifica	CO5	
C	logic control system.		C05
С	logic control system. Neural-network contro operation of a single a	ol system :Artificial neural networks, rtificial neuron, network architecture, works, back-propagation, Neurofuzzy	CO5
Mode of	logic control system. Neural-network contro operation of a single a learning in neural network	ol system :Artificial neural networks, rtificial neuron, network architecture, works, back-propagation, Neurofuzzy	CO5
Mode of examination	logic control system. Neural-network contro operation of a single a learning in neural netw control	ol system :Artificial neural networks, rtificial neuron, network architecture, works, back-propagation, Neurofuzzy	CO5
Mode of	logic control system. Neural-network control operation of a single a learning in neural network control Theory/Jury/Practical	ol system :Artificial neural networks, rtificial neuron, network architecture, works, back-propagation, Neurofuzzy /Viva	CO5
Mode of examination Weightage	logic control system.Neural-network controloperation of a single a learning in neural network controlTheory/Jury/PracticalCAMTE30%20%1. Curtis D. Johnson "F Technology,"8th Editio 2. I.J. Nagrath and M. 1	ol system :Artificial neural networks, rtificial neuron, network architecture, works, back-propagation, Neurofuzzy /Viva ETE 50% Process Control Instrumentation	CO5
Mode of examination Weightage Distribution	logic control system.Neural-network controloperation of a single a learning in neural network controlTheory/Jury/PracticalCAMTE30%20%1. Curtis D. Johnson "F Technology,"8th Editio 2. I.J. Nagrath and M. 1	ol system :Artificial neural networks, rtificial neuron, network architecture, works, back-propagation, Neurofuzzy /Viva /Viva Process Control Instrumentation n Pearson. Gopal, "Control Systems Engineering,"	CO5

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4
CO117.1	3	2	1	1	1	-	-	-	-	-	2	-
CO117.2	3	2	1	1	1	-	-	-	-	-	2	-
CO117.3	2	2	3	2	2	-	-	-	3	3	1	1
CO117.4	2	2	3	2	2	-	-	-	3	3	2	2
CO117.5	2	2	3	2	2	-	-	-	3	3	3	3

Sch	ool: SET	Batch : 2019-21							
Pro	gram: M.Tech	Current Academic Year: 2019-21							
Bra	nch: EEE/EE	Semester: 1							
1	Course Code	MIA112							
2	Course Title	MEMS, Smart Sensors and WSN							
3	Credits	3							
4	Contact Hours (L-T-P)	3-0-0							
	Course Status	Compulsory /Elective/Open Elective							
5	Course	To provide students with:							
	Objective	1. basic principles and techniques of MEMS and Smart Sen							
		2. knowledge of various fabrication and machining process	of MEMS along with						
		its benefits in relation to applications							
		3. Knowledge in wireless sensor networks and to apply this	knowledge in various						
		industrial application like environmental monitoring, stru	ictural health and						
		greenhouse monitoring							
6	Course	CO1: To be able to understand architecture of smart sensors alor	ng with differences						
	Outcomes	among smart, intelligent and network sensors.							
		CO2: To be familiar with the important concepts applicab	le to MEMS and						
		their fabrication							
		CO3: To be able to select and apply the MEMS and smart sensors	s to different						
		applications.							
		CO4: To understand principles of wireless sensor networks and c	differentiate among						
		various wireless network protocols . CO5: To apply principles of WSN in various industrial, environmental and societal							
		applications.	ental and societal						
7	Course								
	Description	This course is aimed at equipping students with basic knowledge on of							
		MEMS (Micro electro Mechanical System), Smart sensor and its various fabrication							
		techniques. This course also enables the student with appropriat	e knowledge of						
0		Wireless sensor network and its applications in industry.	COM :						
8	Outline syllabus		CO Mapping						
	Unit 1	Basics of MEMS and Smart Sensors	001						
	A	Overview of measurement system, transducers, sensors,	CO1						
	D	actuators and signal conditioners	CO1						
	B C	Definition, working principle and construction of MEMS							
	C	Definition and architecture of smart sensor; different levels of integration in smart sensors; Differences between smart,	CO1						
		intelligent and network sensors; Advantages of smart							
		sensors							
	Unit 2	MEMS and Smart Sensor Technologies							
	A	Micro-machining processes: materials for micro-	CO2						
		machining, wafer bonding, bulk and surface							
		micromachining							
	В	IC Technologies: thick film, thin film technologies	CO2						
	C	Monolithic IC technology	CO2						
	Unit 3	Case studies of MEMS and Smart Sensors							
	A	Principles, characteristics and constructional details of	CO3						
	11	Trinopros, enductoristics and constructional details Of							

	MEMS based	l smart accel	eration and pressure sensors					
В	Principle, cha	aracteristics a	and constructional details of a	CO3				
	smart temper		CO3					
C	-	Principle, characteristics and constructional details of a						
		smart humidity sensor						
Unit 4	Wireless Ser							
Α		-	WSN, Network topologies; seven	- CO4				
			nunication system					
В			protocol, Merits of Zigbee over	CO4				
			nd Bluetooth for WSN,					
	architecture of							
C			ork (SAN) - homogeneous and	CO4				
	heterogeneou							
	WSN Appli	cations in Ir	ndustry					
Unit 5				CO5				
А	_	Spectrum of applications; Case studies on WSN application: Environment monitoring						
	**							
В		Condition monitoring - Structural health and Equipment						
		health monitoring Greenhouse monitoring and control						
C		-		CO5				
Mode of	Theory/Jury/	Practical/Viv	/a					
examination			FTF					
Weightage	CA	MTE	ETE					
Distribution	30%	20%	50%	1				
Text book/s*			s and Transducers", Prentice-Hol	I,				
	2 nd Edition	·						
	-		standing Smart Sensors", Artec	h				
	House, 2 nd	Edition, 200	0.					
	6 E.H. Cal	laway, "V	Vireless Sensor Networks	:				
	Architecture and Protocols"							
Other	3. H.K.	nt l						
References								
	-		*					
	-	<u>Sensor</u> , <u>Chapter 2 – Smart Sensor Technologies</u> , <u>Chapter 3</u>						
	<u>– Case Studie</u>							
			8 1	at				
	1 1 1 1	r						
	-		, <u>Chapter 1 – Wireless Senso</u>					
	Network, (Chapter 2 – V	Vireless Sensor Node, <u>Chapter 3</u> ss Sensor Networks.					

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4
CO112.1	3	1	-	2	1	-	-	1	2	3	-	-
CO112.2	3	1	-	2	1	-	-	2	2	3	-	-
CO112.3	1	2	3	2	2	1	-	2	3	-	-	1
CO112.4	3	1	-	2	1	-	-	1	2	3	-	-
CO112.5	1	2	3	2	2	1	-	2	3	-	2	1

Sch	ool: SET	Batch : 2019-21	
Pro	gram: M.Tech	Current Academic Year: 2019-21	
	nch: EEE	Semester : I	
1	Course Code	MIA113	
2	Course Title	Intelligent Actuators and Mechatronics	
3	Credits	3	
4	Contact	3-0-0	
	Hours		
	(L-T-P)		
	Course Status	Department Elective	
5	Course	• Discussing of basic components of actuators and mechatr	onics
	Objective	• Discussing of electronics and digital circuits concepts of t	
	5		ne subject
		• Explaining concept of intelligent and smart system	
		• Discussing of interfacing concepts of mechatronics system	ns
		• Giving case studies and exploring knowledge on designing	g
6	Course	CO 1: Getting knowledge on basic components of actuators	and
	Outcomes	mechatronics	
		CO 2: Exploring knowledge and getting design concepts of	
		CO 3: Identifying concepts smart and intelligent on mechatr	onics systems
		CO 4: Able to design of interfacing circuits for the subject	
_		CO 5: Able to design of tailor-made systems	1
7	Course	The field of mechatronics has braddened the scope of the tra	
	Description	of elctromechanics. The subject is made to know modern tree	
		mechatronics system, hybrid of different engineerings, stand	alone
8	Outline syllabu	mechatronics systems.	CO Mapping
0	Unit 1	Introduction	CO Mapping
	A	Definitions: Mechatronics & actuator; Overview of sensors,	CO1
	A	current & voltage sources; Grounding	COI
	В		
		Solenoids relays electrical motors for actuators	CO1
		Solenoids, relays, electrical motors for actuators	CO1
	C	Basics of open loop and closed loop systems , block diagram of	CO1 CO1
	С	Basics of open loop and closed loop systems , block diagram of mechatronics system ; Scope of the course	CO1
	C Unit 2	Basics of open loop and closed loop systems , block diagram of mechatronics system ; Scope of the course Overview of Analog and Digital Electronics	
	С	Basics of open loop and closed loop systems , block diagram of mechatronics system ; Scope of the course Overview of Analog and Digital Electronics Active electronic devices for mechatroics, basics of operation	CO1
	C Unit 2 A	Basics of open loop and closed loop systems , block diagram of mechatronics system ; Scope of the courseOverview of Analog and Digital ElectronicsActive electronic devices for mechatroics, basics of operation amplifiers and instrumentation amplifiers	CO1 CO2
	C Unit 2	 Basics of open loop and closed loop systems , block diagram of mechatronics system ; Scope of the course Overview of Analog and Digital Electronics Active electronic devices for mechatroics, basics of operation amplifiers and instrumentation amplifiers Display systems, measurement systems, testing and calibration 	CO1 CO2 CO2
	C Unit 2 A B	 Basics of open loop and closed loop systems , block diagram of mechatronics system ; Scope of the course Overview of Analog and Digital Electronics Active electronic devices for mechatroics, basics of operation amplifiers and instrumentation amplifiers Display systems, measurement systems, testing and calibration Combination logic and logic classes; Flip-flops and their 	CO1 CO2
	C Unit 2 A B	 Basics of open loop and closed loop systems , block diagram of mechatronics system ; Scope of the course Overview of Analog and Digital Electronics Active electronic devices for mechatroics, basics of operation amplifiers and instrumentation amplifiers Display systems, measurement systems, testing and calibration Combination logic and logic classes; Flip-flops and their applications; Microcontroller concepts 	CO1 CO2 CO2
	C Unit 2 A B C	 Basics of open loop and closed loop systems , block diagram of mechatronics system ; Scope of the course Overview of Analog and Digital Electronics Active electronic devices for mechatroics, basics of operation amplifiers and instrumentation amplifiers Display systems, measurement systems, testing and calibration Combination logic and logic classes; Flip-flops and their 	CO1 CO2 CO2
	C Unit 2 A B C Unit 3	 Basics of open loop and closed loop systems , block diagram of mechatronics system ; Scope of the course Overview of Analog and Digital Electronics Active electronic devices for mechatroics, basics of operation amplifiers and instrumentation amplifiers Display systems, measurement systems, testing and calibration Combination logic and logic classes; Flip-flops and their applications; Microcontroller concepts Smart and Intelligent Actuators 	CO1 CO2 CO2 CO2
	C Unit 2 A B C Unit 3	Basics of open loop and closed loop systems , block diagram of mechatronics system ; Scope of the courseOverview of Analog and Digital ElectronicsActive electronic devices for mechatroics, basics of operation amplifiers and instrumentation amplifiersDisplay systems, measurement systems, testing and calibration Combination logic and logic classes; Flip-flops and their applications; Microcontroller conceptsSmart and Intelligent Actuators Definitions: Smart and intelligent actuators; Architecture and	CO1 CO2 CO2 CO2
	C Unit 2 A B C Unit 3 A	 Basics of open loop and closed loop systems , block diagram of mechatronics system ; Scope of the course Overview of Analog and Digital Electronics Active electronic devices for mechatroics, basics of operation amplifiers and instrumentation amplifiers Display systems, measurement systems, testing and calibration Combination logic and logic classes; Flip-flops and their applications; Microcontroller concepts Smart and Intelligent Actuators Definitions: Smart and intelligent actuators; Architecture and operation of smart actuator 	CO1 CO2 CO2 CO2 CO2 CO3
	C Unit 2 A B C Unit 3 A B	Basics of open loop and closed loop systems , block diagram of mechatronics system ; Scope of the courseOverview of Analog and Digital ElectronicsActive electronic devices for mechatroics, basics of operation amplifiers and instrumentation amplifiersDisplay systems, measurement systems, testing and calibration Combination logic and logic classes; Flip-flops and their applications; Microcontroller conceptsSmart and Intelligent Actuators Definitions: Smart and intelligent actuator; Architecture and operation of smart actuatorIntelligent actuator without feedback sensor in detail	CO1 CO2 CO2 CO2 CO2 CO3 CO3
	C Unit 2 A B C Unit 3 A B C	Basics of open loop and closed loop systems , block diagram of mechatronics system ; Scope of the courseOverview of Analog and Digital ElectronicsActive electronic devices for mechatroics, basics of operation amplifiers and instrumentation amplifiersDisplay systems, measurement systems, testing and calibration Combination logic and logic classes; Flip-flops and their applications; Microcontroller conceptsSmart and Intelligent Actuators Definitions: Smart and intelligent actuator; Architecture and operation of smart actuatorIntelligent actuator without feedback sensor in detailIntelligent actuator with feedback sensor in detail	CO1 CO2 CO2 CO2 CO2 CO3 CO3

В	Interfacing of re motors to micro		DC, AC motors and special	CO4					
С	Selecting of mo	electing of motor for actuators							
Unit 5	Case studies &	ase studies & Design Exercise							
А	Case study 1: N	ase study 1: Mechatronic design of a coin counter; Case study							
В	Case study 2: N handling syster	ase study 2: Mechatronics for conveyor based material and ling system							
С	Design exercise	Design exercise on mechatronic system							
Mode of examination	Theory								
Weightage	СА	MTE	ETE						
Distribution	30%	20%	50%						
Text book/s*	-	David G, Alciatore et al., "Introduction to Mechatronics and Measurement Systems", Tata McGraw Hill, 2003							
Other	3. W.Bolt	3. W.Bolton, "Mechatronics", Pearson Education, 2005							
References	4. Godfre	y C. Onwubolu, '	'Mechatronics", Elsevier, 2005						

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4
CO113.1	3	1	1	-	1	-	-	1	3	3	-	3
CO113.2	2	3	2	3	-	2	2	1	3	3	2	3
CO113.3	2	1	3	3	2	3	3	2	3	2	1	2
CO113.4	1	2	1	-	2	1	1	1	3	2	2	2
CO113.5	2	1	3	1	-	2	-	2	3	2	-	2

Sch	nool: SET	Batch : 2019-21	
Pro	ogram: B.Tech	Current Academic Year: 2019-21	
	anch:EEE/EE/ECE	Semester: 2	
1	Course Code	EEE331	
2	Course Title	PLC and SCADA	
3	Credits	3	
4	Contact Hours	3-0-0	
•	(L-T-P)		
	Course Status	Compulsory /Elective/Open Elective	
5	Course Objective	To provide students with:	
0	course objective	1. The conceptual as well as practical knowledge of the Indu	ustrial
		Automation & latest technologies being used to achieve Inc	
		Automation.	ustilai
6	Course Outcomes	The students should be able to	
0	Course Outcomes	CO1: understand the concepts of computer based Industrial	Control
		including PLC, DCS and SCADA.	control,
		CO2: understand hardware of PLC and ladder programmin	og for PLC
		CO3: use various PLC functions and develop PLC program	
		industrial control and automation applications.	
		CO4: understand the purpose, layout, components and fund	ctions of
		SCADA systems and use the knowledge for the operation of	
		systems in Industry	
		CO5.design SCADA system including layout, communicat	ion system
		and software.	1011 SJ Stern
7	Course		
	Description	This course is aimed at equipping students with appropriate know	owledge and
	1 I	skills required in configuring, programming and operating Indus	trial
		automation systems with the use of Industrial Field Instruments	s, PLC and
		SCADA systems.	
8	Outline syllabus		CO Mapping
	Unit 1	Computer Based Industrial Control	
	А	Microprocessor/microcontroller based industrial controller:	CO1
		concept and configuration	
	В	Computer based industrial controller: concept and	CO1
	0	configuration	001
	C	Introduction to direct digital control (DDC), distributed control system (DCS) and supervisory control and data acquisition	CO1
		(SCADA)	
	Unit 2	PLC Basics	
	A A	Introduction to PLC, PLC versus	CO2
	11	microprocessor/microcontroller/computer; Advantages and	
		disadvantages of PLC	
	В	Hardware, internal architecture and physical forms of PLC;	CO3
		Digital inputs/ outputs; Analog inputs/ outputs	
	С	PLC programming: ladder programming, function blocks,	CO2
		Instruction lists, Sequential function chart, mnemonic	
		programming	
	Unit 3	PLC Functions	
	A	Registers: holding, input and output registers; Timers and timer	CO4

	functions; Cour	nters and cour	nter functions					
В	Data handling f			CO4				
С	Advanced funct	tions; PLC pi	rogramming using various	CO4				
	functions							
Unit 4	SCADA Basics,	Layout and F	unctions					
А			purpose; Controlled / uncontrolled ally controlled objects in controlled	CO5				
В	Layout and part of SCADA syst	CO5						
С	transmission, m	Functions of SCADA system: data acquisition and transmission, monitoring, control, data collection and storage, data processing and calculation, report generation						
	SCADA Design							
Unit 5								
A	Master Termina multiprocessor of MTU; Remo / layout; RTU p	CO5						
В	MTU-RTU con communication	CO5						
C	Design of SCAD Software.	A system : H	ARDWARE, Communication and	CO5				
Mode of examination	Theory/Jury/P	ractical/Viv	a					
Weightage	СА	MTE	ETE					
Distribution	30%	20%	50%					
Text book/s*	Prentice-Hall In 2 Stuart A. Bo	 J.W. Webb and R.A. Reis, Programmable Logic Controllers, Prentice-Hall India Stuart A. Boyer, Supervisory Control and Data Acquisition (SCADA), 4th Edition, International Society of Automation, 						
Other References	J.R. Hackworth Controllers, Pea 2. W. Boston, P Elsevier). 3. H.K. Verma, S www.profhkver 2: Functions of System.							

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4
CO336.1	3	3	-	1	-	-	-	-	2	1	-	1
CO336.2	3	3	-	1	2	-	-	-	2	1	2	1
CO336.3	3	3	-	1	2	-	-	-	2	3	2	1
CO336.4	3	3	-	1	-	-	-	-	2	1	-	1
CO336.5	2	2	3	3	3	-	-	-	2	3	2	1

Sch	nool:	Batch: 2019	9-21					
Pro	gram: M Tech	Current Aca	ademic Year	: 2019-21				
	anch: EEE I&A	Semester:2						
1	Course Code	EEP117						
2	Course Title	PLC and SC	ADA Lab					
3	Credits	1						
4	Contact Hours (L-T-P)	0-0-2						
	Course Status	Compulsory						
5	Course Objective				edge about the	e PLC based process		
6	Course Outcomes	CO2: To pert CO3: To pert CO4: To imp CO5: To imp	form process form motor c plement basic plement advan	rm basic experiment control using PLC. ontrol using PLC. SCADA functions. need SCADA functions	ons			
7	Course Description			e covers the implem ADA and their appli				
8	Outline syllabus					CO Mapping		
	Unit 1	PLC based b	oasic experir	nents				
	A	1.To study an	nd use of NO			201		
	В	1.To study an 2.To study an	nd use of Tin	C	201			
	С	1.To study an 2. To study le		nter instruction PLC.	C	201		
	Unit 2	PLC based	process cont	rol				
	А	Water Level	Control using	g PLC	C	202		
	В			odule using PLC	C	202		
	С	Traffic control	ol using PLC					
	Unit 3	PLC based I	<u> </u>					
	A-B	Ac motor spe	ed control m	odule using PLC.	C	203		
	С			odule using PLC		203		
	Unit 4	Basic SCAI		U				
	A	Parameter rea			(204		
	B-C	Alarm annun	<u> </u>			204		
	Unit 5	Advanced S	Ŭ					
	A	SCADA com	munication v	vith PLC		205		
	В	Trend Monit		DA	C	204		
	С	Reporting on						
	Mode of examination	Practical & V	liva					
	Weightage	CA	MTE	ETE				
	Distribution	60%	0%	40%				
	Text book/s*							
	Other References	Refer lab ma	nuals					

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO2
CO1	2	2	2	1	-	2	-	2	2	1	2	1
CO2	3	2	1	2	2	3	-	2	2	3	2	3
CO3	3	1	2	1	1	2	-	2	2	2	2	2
CO4	2	2	2	1	2	1	-	1	3	2	2	2
CO5	3	1	2	1	1	2	-	2	2	2	2	2

	hool: SET	Batch : 2019-21	
	ogram: M.Tech	Current Academic Year: 2019-21	
Bra	anch:EEE	Semester: II	
1	Course Code	MIA 115	
2	Course Title	Robotics and Industrial Robots	
3	Credits	3	
4	Contact	3-0-0	
	Hours		
	(L-T-P)		
	Course Status	Compulsory/Elective	
5	Course	1.To understand the construction industrial robotics	
	Objective	2. To explore knowledge on selection of end-effectors of ro	botics
		3. To get knowledge of electrical drive systems of industria	
		4. To know types of sensors of industrial robotics	
		5.To understand of electrical and electronics interfacings	
		6.To study about applications of industrial robots	
6	Course	CO1: Basic construction of robot and robotics components	
0	Outcomes	CO2: Understanding interfacing & building techniques of a	
	Outcomes	CO3: Knowing different types of actuators of robotics	100013
		CO4: Getting knowledge of robotics sensors and transduce	ers
		CO5: Developing interfacing circuits for robotics application	
7	Course	This course gives coverage of robotics components, archite	ecture, and
	Description	electronics interfacing circuits knowledge. Students can also	
	1	programming of robotics using embedded C on open sourc	
		going through this subject. Finally students are able to do t	ailor-made
		projects on robotics engineering	
8	Outline syllabu	15	CO Mapping
	Unit 1	Introduction to Robotics and Motion Analysis	
	А	Historical background; Laws of robotics and robot definitions;	CO1
	В	Robotics systems and robot anatomy: Basic diagram, basic	CO1
		components and their uses; Specifications of robots.	
	C	Position representation; Forward and reverse transformation:	CO1
		2 & 3 DOF	
	Unit 2	2 & 3 DOF Robot End-Effectors, Robot Drives and Actuators	
	Unit 2 A		CO2
		Robot End-Effectors, Robot Drives and Actuators	
		Robot End-Effectors, Robot Drives and Actuators Classification of end-effectors; Mechanical grippers, Magnetic	
	A B	Robot End-Effectors, Robot Drives and Actuators Classification of end-effectors; Mechanical grippers, Magnetic grippers and vaccum grippers; Gripper force analysis.	CO2 CO2,CO3
	А	Robot End-Effectors, Robot Drives and Actuators Classification of end-effectors; Mechanical grippers, Magnetic grippers and vaccum grippers; Gripper force analysis. Functions of drive systems; Electrical drives: DC, BLDC motors, AC motors, stepper motor, piezoelectric actuators; Drive Mechanisms: rack and pinion, ball screws, gear trains	CO2
	A B C	Robot End-Effectors, Robot Drives and Actuators Classification of end-effectors; Mechanical grippers, Magnetic grippers and vaccum grippers; Gripper force analysis. Functions of drive systems; Electrical drives: DC, BLDC motors, AC motors, stepper motor, piezoelectric actuators; Drive Mechanisms: rack and pinion, ball screws, gear trains and harmonic drive.	CO2 CO2,CO3
	A B C Unit 3	Robot End-Effectors, Robot Drives and ActuatorsClassification of end-effectors; Mechanical grippers, Magnetic grippers and vaccum grippers; Gripper force analysis.Functions of drive systems; Electrical drives: DC, BLDC motors, AC motors, stepper motor, piezoelectric actuators;Drive Mechanisms: rack and pinion, ball screws, gear trains and harmonic drive.Sensors of Robotic System	CO2 CO2,CO3 CO2
	A B C	Robot End-Effectors, Robot Drives and ActuatorsClassification of end-effectors; Mechanical grippers, Magnetic grippers and vaccum grippers; Gripper force analysis.Functions of drive systems; Electrical drives: DC, BLDC motors, AC motors, stepper motor, piezoelectric actuators;Drive Mechanisms: rack and pinion, ball screws, gear trains and harmonic drive.Sensors of Robotic SystemUses of sensors in robotics; Shaft Encoders (linear and	CO2 CO2,CO3
	A B C Unit 3	Robot End-Effectors, Robot Drives and ActuatorsClassification of end-effectors; Mechanical grippers, Magnetic grippers and vaccum grippers; Gripper force analysis.Functions of drive systems; Electrical drives: DC, BLDC motors, AC motors, stepper motor, piezoelectric actuators;Drive Mechanisms: rack and pinion, ball screws, gear trains and harmonic drive.Sensors of Robotic System	CO2 CO2,CO3 CO2
ера	A B C Unit 3	Robot End-Effectors, Robot Drives and ActuatorsClassification of end-effectors; Mechanical grippers, Magnetic grippers and vaccum grippers; Gripper force analysis.Functions of drive systems; Electrical drives: DC, BLDC motors, AC motors, stepper motor, piezoelectric actuators;Drive Mechanisms: rack and pinion, ball screws, gear trains and harmonic drive.Sensors of Robotic System Uses of sensors in robotics; Shaft Encoders (linear and rotational);nt of EEE	CO2 CO2,CO3 CO2 CO4
ера	A B C Unit 3 A	Robot End-Effectors, Robot Drives and ActuatorsClassification of end-effectors; Mechanical grippers, Magnetic grippers and vaccum grippers; Gripper force analysis.Functions of drive systems; Electrical drives: DC, BLDC motors, AC motors, stepper motor, piezoelectric actuators;Drive Mechanisms: rack and pinion, ball screws, gear trains and harmonic drive.Sensors of Robotic System Uses of sensors in robotics; Shaft Encoders (linear and rotational);	CO2 CO2,CO3 CO2

Unit 4	Controlling Tee	Controlling Technologies of Industrial Robots							
А	Basics of PC int	erfacings		CO5					
В	Microcontrolle	Microcontroller interfacings							
С	Robot language	Robot languages and classification; Robot software.							
Unit 5	Industrial Robo	ndustrial Robot Applications							
А	Material handl	Material handling robots							
В	Welding Robot	Welding Robots							
С	Assembling rot	oots		CO6					
Mode of	Theory								
examination									
Weightage	CA	MTE	ETE						
Distribution	30%	20%	50%						
Text book/s*	1.S.R. Deb and	S. Deb. "Roboti	cs Technology and Flexible						
		•	McGraw Hill, 2011.						
Other	2. Mikell P Gr	oover et al., "	ndustrial Robotics", fifth print,						
References	McGraw Hill, S	pecial Indian Ed	ition, 2013						

Course Articulation Matrix

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3
CO 115.1	2	2	3	2	-	-	-	1	2	1	2
CO 115.2	2	3	3	2	3	1	1	2	2	2	2
CO 115.3	3	3	2	2	3	1	1	3	3	3	2
CO 115.4	3	2	2	3	2	1	-	2	3	2	2
CO 115.5	2	3	3	2	1	1	2	3	2	3	3

Scho	ol: SET	Batch : 2019-21							
Prog	ram: M.Tech	Current Academic Year: 2019-21							
)	ch: EEE/EE	Semester: 1I							
1	Course Code	MIA116							
2	Course Title	Industrial Network Protocols and IoT							
3	Credits	3							
4	Contact Hours	3-0-0							
	(L-T-P)								
	Course Status	Compulsory /Elective/Open Elective							
5	Course	To provide students with:							
	Objective	4. basic principles network communications and communication	n system models						
		and it's seven layers.							
		5. In depth knowledge of wired and wireless network protocols.							
		6. With the concept of IoT, M2M and IIoT along with typical app							
6	Course	CO1: To be able to understand the principles and types of data netwo	orks, especially						
	Outcomes	those used in industry.							
		CO2: have in-depth knowledge of industrial wired network protocols	and their						
		comparative merits and limitations.							
		CO3: To be able to apply Ethernet/IP protocol for industrial control and	nd automation						
		applications.							
		CO4: To be able to select and apply wireless network protocol for inst	trument control						
		and automation for industrial and societal applications.	IoT avatores for						
		CO5: To be able to apply the concepts of IoT and design and develop industrial, societal, environmental and domestic applications.	for systems for						
7	Course								
/	Description	This course is aimed at equipping students with in-depth knowledge	various industrial						
	Description	network protocols, both wired and wireless types and a working know							
		concepts and systems.							
8	Outline evillebus		CO Magning						
0	Outline syllabus Unit 1	Basics	CO Mapping						
	A	Principles of analog and digital communication and their	CO1						
	A	comparison; Asynchronous and synchronous data	COI						
		transmission; Simplex, half duplex and full duplex							
		transmission; Baseband and broadband communications;							
		Signal transmission media: UTP, STP and coaxial cables,							
		PLCC, optical fibres and radio link;							
	В	Concept of LAN, PAN, MAN, WAN and Internet; Error	CO1						
		detection techniques: Parity check, check sum and CRC; LAN							
		topologies; Role of data communication and networks in							
		industrial automation; Field-level, control-level and enterprise-							
		level networks;							
	С	ISO's seven-layer OSI model: significance, scope, functions of	CO1						
		various layers; IEC's four-layer EPA model: significance,							
		functions of various layers; MAC techniques: reservation,							
		selection and contention techniques, polling, token passing,							
		CSMA/CD ; Special requirements of industrial network							
		protocols, list of important industrial wired and wireless							
		network protocols.							

Unit 2		l Wired–Netw						
A		•	l characteristic features of fieldbu	s, CO2				
	popular fi							
		00	ced-mode transmission in half duple					
		-	IAC protocol, merits and limitations.					
		-	col stack, Modbus address space an					
		v 1		or				
			ASCII and Modbus/TCP, formats					
	data requests and responses for main function codes (examples							
			ons of Modbus.					
В			FF protocol stack; physical laye					
	1 0		ata link layer: FDLC and FMA	2,				
			and limitations of FF.					
С			Protocol: DNP protocol stack, DN					
			ver and physical topologies, data lin					
			layer, application layer, merits an	nd				
	limitation	s of DNP3.						
Unit 3		and Ethernet						
A			hysical layer, speed variants of	CO3				
			e format; TCP/IP model; Ethernet					
			er, bridge, router, gateway, hub and					
			tions of Ethernet for industrial					
	applicatio							
В		Industrial Proto		CO3				
C		-	of Common Industrial Protocol (CI					
			UDP, comparison between standa	rd				
		and Ethernet /IF						
Unit 4			work Protocols					
A	0	1 .	IEEE802.15.4, data rates, ISM-	CO4				
	- ·		l bandwidths, full-function and					
			, PAN coordinator, MAC protocol					
		ransfer types						
B		network topolog		CO4				
C	_		vith Wi-Fi and Bluetooth.	CO4				
Unit 5	IoT and	Industrial IoT	,					
A	IoT conce	ept and definition	n; Technologies behind IoT;	CO5				
В	CISCO's	7-tier IoT re	ference model; Components of Ic	T CO5				
			ication; Relation between IoT, M2					
			nodel for IoT/M2M/IIoT;					
С			of IoT, M2M and IIoT.	CO5				
Mode of		iry/Practical/Vi						
examination		-						
Weightage	CA	MTE	ETE					
Distribution	30%	20%	50%					
Text book/s*		illiam Stallings,	"Data and Computer Communications",					
			Prentice Hall, 2007.					

	 Mini S. Thomas and John D. McDonald, "Power System SCADA and Smart Grids", CRC Press, 2015. Raj Kamal, "Internet of Things: Architecture and Design Principles", Mc Graw Hill Education, 2017.
Other	
References	 David Bailey and Edwin Wright, "Practical SCADA for Industry", Newnes, 2009. S.K. Singh, "Industrial Instrumentation and Control", Tata McGraw-Hill, 2003. M.M.S. Anand, "Electronic Instruments and Instrumentation Techniques", Prentice Hall, 2004. H.K. Verma, Sensor Networks, e-monograph at www.profhkverma.info, Chapter 2 – Wired Network Technologies/Protocols, Chapter 3 – Wireless Network Technologies/Protocols. H.K. Verma, SCADA, e-monograph at www.profhkverma.info, Chapter 4: Network Technologies Deployed in SCADA Systems.

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4
CO116.1	3	1	-	-	2	-	-	2	2	1	-	1
CO116.2	3	2	3	2	2	-	-	2	2	2	-	2
CO116.3	3	2	3	2	2	-	-	2	2	2	-	2
CO116.4	3	2	3	2	2	2	-	2	2	2	-	2
CO116.5	3	2	3	2	2	2	-	2	2	2	-	2

Sch	ool:	Batch : 2019-21
	gram:	Current Academic Year: 2019-21
	nch: EEE	Semester:
1	Course Code	MIC008
2	Course Title	Virtual Instrumentation
3	Credits	3
4	Contact Hours (L-T-P) Course	3-0-0 Elective/Open Elective
	Status	
5	Course Objective	 9. Introduction to the various models of Virtual Instruments, their comparison with traditional instruments and major application areas of VI. 10. Introduction to basics of LabVIEW 11. VI Programming techniques like loops, arrays, clusters, plotting and Strings and files. 12. Basics of signal conditioning techniques along with DAQ hardware and software and various signal processing techniques available in LABVIEW. 13. Advanced concepts in LabVIEW with main concepts of real time applications in Image acquisition and Motion control. 14. Building of Virtual Instruments with various types of controls and indicators. 15. Configuring DAQ card and acquisition of real time signals from sources and sensors. 16. Simulate a signal in LabVIEW and generate a virtual source using DAQ cards.
6	Course Outcomes	CO1: Understand various models and areas of application of Virtual Instrumentation. CO2: Understand various components of LabVIEW required for the development of VI. CO3: Understand and apply various programming functions of LabVIEW like loops, arrays, clusters and file I/Os for building of simple Virtual instruments. CO4: Understand the concepts of Data acquisition hardware and software and to apply basic signal processing techniques available in LabVIEW. CO5: Able build VI for simulated and real time applications.
7	Course	
	Description	The course content of this subject includes an introduction to graphical system design. This course also focuses on introduction to LabVIEW which extensively elaborate the Graphical programming language .In Unit 3, building of VI by using loops, arrays, clusters etc. have been dealt with. Use of strings and I/O are also elaborated in this course. Data acquisition

		-	-	ng techniques are also covere			
			-	notion control and Image acc	luisition by using		
		LabVIEW have be	een elabora	ted in this course.			
8	Outline syllab	18	CO Mapping				
	Unit 1	Introduction			CO1		
	А	Graphical system de	esign model	- design model, prototype			
		model, deployment	model				
	В	Building blocks of					
		instrument, Hardwa					
	С			LabVIEW; Graphical			
		programming and T					
	Unit 2	Graphical system			CO2		
	A	panel windows, Blo		ponents of VI Software - Front windows, Icon /connector			
		pane					
	В			bars, Palettes, Front panel			
			tors, Block c	liagram – terminals, nodes,			
	C	functions		wires; Data types, Data flow			
	С	-					
	TI:4 2	program Programing Too	hnianaa		CO2 CO5		
	Unit 3	Programming Tec	=	View; Building VI front panel	CO3,CO5		
	A	and block diagram					
	В	LabVIEW, Arrays in LabVIEW,					
	C		ion between arrays and EW, Strings and File I/O in				
	Unit 4	Data Acquisition	CO4				
	А	Transducers and Sig					
	В	Basics of DAQ hard	dware and so	oftware, DAQ modules and			
		drivers for building	virtual instr	ruments			
	C	Fourier transforms; Windowing & filter					
	Unit 5	Advanced concep	pts in Lab ^v	VIEW	CO5,CO3,CO4		
	А	Data Socket, TCP/I	P VI's syncl	hronization			
	В	Serial interface bus	es - RS 232,	RS485,USB			
	С	Concepts of real tin control	ne systems;	Image acquisition; Motion			
	Mode of	Theory/Jury/Pract	tical/Viva				
	examination	Theory/Jury/Fract	lical/viva				
			TE	ETE			
	Weightage		TE	ETE			
	Distribution	30% 20	1%	50%			
	Text book/s*		ome, "Virtua ", PHI Lear	al Instrumentation and ning			
	Other	1. C.L. Clark, "I	LabVIEW D	igital Signal Processing",			
	References	TMH Publishing Co		-			
	1	8. Technical	1				

	and National Instruments	
9.	www.profhkverma.info: Chapter 2: Technologies/	
	Protocols for Wired Sensor Network	
10). NI USER MANUAL	
	http://www.ni.com/pdf/manuals/376445b.pdf	
1	. www.ni.com	

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4
CO336.1	-	2	1	1	-	-	2	-	-	1	-	1
CO336.2	3	2	1	2	3	-	1	-	3	1	-	1
CO336.3	3	2	3	2	3	-	2	2	3	3	-	2
CO336.4	-	2	2	2	1	-	2	1	-	3	-	2
CO336.5	1	3	3	2	3	-	2	2	3	3	-	2

Sch	ool: SET	Batch : 2019-21	
	gram:	Current Academic Year: 2019-21	
M. 7			
	nch: I&A and	Semester: I	
<u>I&(</u>		MIC101	
$\frac{1}{2}$	Course Code Course Title	MIC101	
3	Credits	Analog and Digital Signal Processing 4	
4	Contact	3-1-0	
	Hours	510	
	(L-T-P)		
	Course	Compulsory	
	Status		
5	Course Objective	To provide the student with	
		5. Concepts so as to categorise various types of Sign	nals and Systems.
		6. In-depth knowledge so that implemention of cir	rcuits related to linear
		applications of the opamp are acheivable.	
		7. Basic understanding for the implementatoion of act	tive filters using opamp.
		8. Strong foundation for designing of Digital Syster	ns both FIR and IIR and
		analyses of systems using DFT and FFT.	
6	Course Outcomes	CO1: To categorise the various types of signals and s various mathematical operations on signals.	systems and to perform
		CO2: To differentiate and design various applications of o	p-amp.
		CO3: To design and implement various types of digital filt	ters.
		CO4: To do frequency analysis using DFT and FFT.	
7	Course Description	The course content of this subject includes introduction of also covers the various linear and nonlinear applications of content elaborates the designing and implementation of dig DFT and FFT as the main frequency tool.	f the opamp. Also the
8	Outline syllab	us	CO Mapping
	Unit 1	Introduction to Signals and Systems	CO1
	А	Continuous-time and discrete-time signals and their	
		mathematical representation, analog and digital signals,	
		analog signal processing (ASP) and digital signal	
		processing (DSP)	
	В	Signal, Continuous time signals (CT signals), discrete	
		time signals (DT signals) - Step, Ramp, Pulse, Impulse,	
L			

	Exponential, Classification of CT and DT signals -	<u> </u>
	periodic and aperiodic, Even and Odd, Power and Energy	
	Invertible and Non-invertible, Deterministic and Random	
С	System, Basic Types of Systems- Causal and Non-	
	causal, Stable and Unstable, Static and Dynamic. Linear	
	and Non-Linear Time Variant and Time Invariant, Basic	
	operations on signals - addition, multiplication, shifting,	
	folding, etc.	
Unit 2	Linear Applications of Opamp	CO2
A A	Operational amplifier: block diagram, equivalent circuit,	
	ideal and practical operational amplifier; inverting and	
D	non-inverting amplifier circuits	
B C	Practical Integrator and Differentiator circuits, Summing and differential amplifier circuits;	
C	Instrumentation amplifier	
Unit 3	Opamp based Filters	CO2
A	Passive and active filters, their comparison; frequency response of low- pass, high- pass ,band- pass, band- stop and notch filters and their use in instrumentation;	
В	Active filters: Basic low- pass filter circuit , first and	
0	second order low- pass and high- pass Butterworth filters	
C	Band- pass filter, Band reject (notch) filter, Concept of	
	higher order filter realization	
Unit 4	Digital Filters	CO3
А	Design of Digital Filters Design of FIR Filters:	
	Symmetric and Anti-symmetric FIR Filters. Design of	
	Linear phase FIR Filter using Windows, Gibbs	
	phenomenon.	
В	Design of IIR Filters: Design by Approximation of	
	Derivatives, Impulse Invariance and by Bilinear	
	Transformation.	
С	Direct form-1 and form-2 realizations, Cascade and	
	Parallel realizations, recursive and non-recursive	
	methods of realizations.	
Unit 5	Frequency Analysis	CO4

A	Digital Fourier	transform (DF	Т),								
В	DFT algorithm	for frequency									
С	Fast Fourier tra	ansform (FFT),	FFT algorithm for frequency								
	analysis.										
Mode of examination	Theory										
Weightage	CA	MTE	ETE								
Distribution	30%	20%	50%								
Text book/s*	Circuits" Pearso 2. Sedra and Smi University Press. 3. G. Proakis	n Education, 4th ith, ''Microelectro and D.G. Manol	p-Amp and Linear Integrated Edition onic Circuits", 4th Edition, Oxford akis, "Digital Signal Processing, cations", Pearson Education,								
Other References	Signal Processin 2.Michael Jacob, Circuits, PHI,2 nd	g", PHI 1999 "Applications an Edn.2006 In and Arvin G	and J. R. Buck, "Discrete Time nd Design with Analog Integrated Grabel, "Microelectronics", 2 nd								

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4
CO101.1	3	1	1	1	-	-	-	-	-	-		-
CO101.2	2	2	3	3	2	-	-	-	2	2	2	2
CO101.3	2	3	3	2	3	-	-	-	3	2	2	2
CO101.4	3	3	3	3	2	-	-	-	-	1	2	1

Sch	ool: SET	Batch : 2019-21							
Pro	gram: M.Tech	Current Academic Year: 2019-21							
Bra	nch: EEE	Semester: I							
1	Course Code	MPS114							
2	Course Title	Modelling & Analysis of Power System							
3	Credits	4							
4	Contact Hours (L-T-P)	3-1-0							
	Course Status	Compulsory							
5	Course Objective	The course paves the foundation for exploring the ways and mea power system analysis in normal operation and under symmetric unsymmetrical faults. Models of generators, transformers and tr essential for such analyses are assembled. Additionally, principle formulation, solution, and application of optimal power flow are	cal and ransmission lines es for the						
6	Course Outcomes	On successful completion of this course students will be able to CO1: Ability to solve nonlinear algebraic and handling of sparse r CO2: Develop proper mathematical models for analysis of a sele like load flow study or fault analysis. CO3: Prepare the practical input data required for DC load flow. CO4: Select and identify the most appropriate algorithm for faul CO5: Develop and apply state estimation of power system.	cted problem						
7	Course Description	This course will cover the modelling issues and analysis methods flow, short circuit, contingency and stability analyses, required to for the power systems. Necessary details of numerical technique nonlinear algebraic as well as differential equations and handling matrices are also included.	o be carried out es to solve						
8	Outline syllabus		CO Mapping						
	Unit 1	Sparsity Techniques							
	А	Storage of sparse matrix	CO1						
	В	Sparsity directed inversion methods	CO1						
	С	parallel inversions	CO1						
	Unit 2	Three-Phase Load Flow							
	A	Three-phase models of synchronous generator, transformer and load	CO2						
	В	Load flow equations, solution techniques- Gauss-Seidel	CO2						
	С	Newton Raphson method and fast decoupled method	CO2						
	Unit 3	Load Flow with HVDC link							
	А	DC system model, incorporation of control equations	CO3						
	В	inverter and unified operation	CO3						

С	sequential solut	tion techniques		CO3
Unit 4	Short Circuit St	udies For Unbala	anced Network	
A	Z-bus building a matrices	algorithm, deriva	ation of fault admittance	CO4
В	sequence comp	onents, analysis	of unbalance shunt and series	CO4
С	open circuit fau	ılts		CO4
Unit 5	State Estimatio	n		
А	State estimatio measurements		onlinear systems, pseudo-	CO5
В	Recursive meth method	od and weighte	d least square estimation	CO5
С	Detection and i observability.	CO5		
Mode of examination	Theory			
Weightage	CA	MTE	ETE	
Distribution	30%	20%	50%	
Text book/s*	Arrillaga J. and Systems", John		omputer Analysis of Power	
Other References	CRC Pre 2. Ander	ess.	Aided Power System Analysis", /sis of Faulted Power Systems",	

COs	PO1	PO1	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4
CO114.1	2	1	-	1	1	1	2	2	1	1	2	2
CO114.2	2	1	-	-	1	-	-	-	2	1	1	2
CO114.3	2	2	-	2	1	-	2	2	2	2	1	1
CO114.4	2	-	-	1	1	1	-	-	2	1	2	2
CO114.5	3	1	3	2	3	1	2	2	3	2	2	3

Sc	hool: SET	Batch : 2019-21							
Pr	ogram: M.	Current Academic Year: 2019-21							
Те	ch.								
Br	anch: EEE	Semester:							
1	Course Co	de MPS122							
2	Course Tit	e Extra High Voltage Transmission							
3	Credits	3							
4	Contact	3-0-0							
	Hours								
	(L-T-P)								
	Course	Compulsory							
	Status								
	Course	This course is designed to train the students to cater for the desi	gn and R&D						
5	Objective	requirements for the EHV AC and HVDC power lines.							
		CO1: design and R&D requirements for the EHV AC Transmission	including substation						
		design.							
		CO2: design and R&D requirements for the HVDC Transmission including converter							
	Course	station design.							
6	Outcomes	CO3: calculate line parameters of EHV transmission line.							
		CO4: describe and classify different over-voltage protection situations and their							
		possible protections.							
		CO5: design shunt and series compensation in power system							
		Elicit the advantages of EHV AC transmission systems. Mould stu	idents to acquire						
		knowledge about HVDC Transmission systems. This course gives							
_	Course								
7	Descriptio	 trends in HVDC Transmission and its application, Understand about and its effects on power system. Complete analysis of harmonics 							
		protection for HVDC Systems.							
8	Outline sy		CO Mapping						
	Unit 1	Introduction to EHV Transmission							
	Α	Problems of EHV transmission	CO1, CO2						
	В	calculation of impedance and capacitance matrices of 3-phase	CO3						
		transmission line							
	С	Electrostatic and Electromagnetic field, calculation of corona	CO1, CO2						
		current/loss, radio interference, audible noise interference							
	Unit 2	Computation and Protection against Over-Voltage							
	А	Causes of over voltages	CO1, CO2,						
			CO4						
	В	Methods of protection against switching surges	CO1, CO2,						
		withing surges	CO4						
	С	Means of protection against lightning surges	CO1, CO2,						
		means of protection against lightling surges	CO4						
	Unit 3	Series and Shunt Compensation							
	А	Effect of series capacitors, location of series capacitors	CO1, CO5						

В	Sub-synchronou transmission line		es-capacitor compensated	CO1, CO5
С	Shunt compensa TCR-FC, TCR, TSC		devices, static VAR compensation:	CO1, CO5
Unit 4	Design of Substa	ations		
А	Types of substat	ions, layout of subs	station	CO1
В	bus bar arranger parameters	ments, grounding s	ystem- types of grounding, design	CO1
С	designing a grou	nding grid, measur	ement of soil resistivity	CO1
Unit 5	HVDC Systems			
А	Types of HVDC s	ystems		CO2
В	Terminal equipm	nent and their oper	ations	CO2
С	Dc link control a	nd protection		CO2
Mode of examina tion	Theory			
Weighta	CA	MTE	ETE	
ge Distribut ion	30%	20%	50%	
Text book*	-	, "Extra High Voltag al(P) Ltd, New Delhi	ge Transmission Engineering", New i, 2003	
Other Referen ces	McGraw 2. Padiyar	Hill, New Delhi, 20	Stability and Control", 2 nd Ed., Tata- 08 Transmission Systems", <u>New Age</u>	

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4
CO122.1	2	3	3	1	2	-	-	-	2	2	2	1
CO122.2	2	3	3	1	2	-	-	-	2	2	2	1
CO122.3	3	1	-	-	-	-	-	-	1	-	-	3
CO122.4	2	2	3	2	3	-	-	-	2	3	3	1
CO122.5	2	2	3	2	3	-	-	-	2	3	3	1

Prepared by: Department of EEE

Sch	ool: SET	Batch : 2019-21						
Pro	gram: M.Tech	Current Academic Year: 2019-21						
Bra	nch:EEE	Semester: I						
1	Course Code	MIC104						
2	Course Title	Optimization Techniques in engineering						
3	Credits	4						
4	Contact Hours	3-1-0						
	(L-T-P)							
	Course Status	Compulsory						
5	Course	This course provides the students with:						
	Objective	 Knowledge of solving linear and nonlinear Algebrai Knowledge of solving differential equations Introduction to various concepts of Optimization T Awareness to the importance of optimizations in r Knowledge of various classical and modern method constrained and unconstrained problems in both sin multivariable. Knowledge of Various Evolutionary Techniques Ideas to solve Integer Programming. 	echniques. real scenarios; s of					
6	Course	CO1: Solve various linear and nonlinear Algebraic equations						
	Outcomes	CO2: Solve various Differential equations						
		CO3: Formulate optimization problems						
		CO4: Apply the concept of optimality criteria for various ty optimization problems and solve various constrained and u problems						
		CO5: Know various Evolutionary Techniques and Solve in Programming problems.	nteger					
7	Course Description	Optimization is the process of obtaining the best result circumstances. In design, construction and maintenance engineering system, engineers have to take many techr managerial decisions at several stages. The ultimate goal of decisions is either to minimize the effort required or to man desired benefit. A number of optimization methods have be for solving different types of optimization problems.	of any nological and f all such simize the					
8	Outline syllabus		CO Mapping					
	Unit 1	Algebraic Equations						
	A	Introduction of Algebraic Equations. Iterative methods for solving non linear equations-Bisection method, Regula falsi method, Newton	CO1					

method.			
	method Two	equation Newton Panhson	
	illetilou, 1 wo	equation Newton Raphson	CO1
Iterative methods seidel metho	method, G		CO1
			CO2
Euler's			
method			CO2
U U	methods(fou	rth	000
,			CO2
		mization methods. Types of	
optimization problem			CO3
sufficient		c i	CO3
Simplex met	hod and Dua	l Simplex method	CO3
Optimizati	on Techniqu	es	
Lagrange m	ultiplier, Kuh	n-tucker conditions	CO4
Newtons me	thod, Interior	Penalty function method,	CO4
	ent projection	n	2 01
			CO4
		te swarm and ant colony	CO5
Branch and	Bound metho	d	CO5
cutting plane	e method		CO5
Theory			
CA	MTE	ETE	
30%	20%	50%	
McGraw Hill 2 Rao S.S, '	'Enginering		
and Application 4 Rao S.S, ' Engineers and Scient	ons", Wiley 'Applied Nu tists", Pears	merical Methods for on education	
	method.Iterative methodsseidel methodDifferentiaFinite differe Euler's methodRunga-kutta order)Optimization problemFeasible solu sufficient optimization.Simplex methodLagrange mithodRosen Gradi methodsBranch and D cutting planeCA 30%3 Ravindrar and Application3 Ravindrar and Application3 Ravindrar and ScienceApplication PracticeSimplex methodsBranch and D cutting planeCA 30%3 Ravindrar and ApplicationApplication Cutting plane3 Ravindrar and ApplicationApplication Cutting planeApplication Cora CoraApplication Cora CoraApplication Cutting planeApplication Cutting planeApplication Cutting planeApplication Cutting planeApplication 	method. Iterative for solving methods methods method, G seidel method Differential Equations Finite difference method Euler's method Runga-kutta methods(fou order) Optimization Problems Requirements for the opti optimization problem Feasible solution and feasisufficient optimization frechniqu Itagrange multiplier, Kuh Newtons method, Interior Rosen Gradient projection methods Branch and Bound method Cutting plane method Theory CA MTE 30% 20% 1 1 Balagurusamy, E., "N McGraw Hill 2 Rao S.S, "Enginering Practice", wiley Practice", wiley 3 Ravindran.A, "Engine and Applications", Wiley 4 Rao S.S, "Applied Nu Engineers and Scientists", Pears Scientists", Pears	Iterative for solving linear equations-Jacobi methods method, Gauss-seidel method Differential Equations Finite difference method Euler's method Runga-kutta methods(fourth order) Optimization Problems Requirements for the optimization methods, Types of optimization problem Feasible solution and feasible region, Necessary and sufficient optimality conditions, Graphical method for optimal solution. Simplex method and Dual Simplex method Optimization Techniques Lagrange multiplier, Kuhn-tucker conditions Newtons method, Interior Penalty function method, Rosen Gradient projection method Evolutionary Techniques and Integer Programming Genetic Algorithm, Particle swarm and ant colony optimization methods Branch and Bound method cutting plane method Theory CA MTE Slow 20% Slow 50% 1 Balagurusamy, E., "Numerical methods", Tata McGraw Hill 2 Rao S.S, "Enginering Optimization: Theory and Practice", wiley 3 Ravindran.A, "Engineering Optimization Method and Applications", Wiley 4 Rao S.S, "Applied Numerical Methods for

systems", Kluver Academic 7 Deep K. And Chandra Mohan, Optimization
Techniques", New Age International

8 Deb K, "Optimization for Engineering Design, PHI	
--	--

Course Articulation Matrix:

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4
CO104.1	3	1	2	-	-	-	-	-	2	-	-	-
CO104.2	2	3	-	1	-	-	-	-	2	-	-	-
CO104.3	2	3	2	-	-	-	-	1	2	-	3	-
CO104.4	2	3	1	2	-	1	-	-	3	2	2	2
CO104.5	2	3	2	2	-	1	-	1	2	2	2	2

Prepared by: Department of EEE

Sch	ool: SET	Batch : 2019-21	
Pro	gram: M.Tech	Current Academic Year: 2019-21	
Bra	n ch: EEE	Semester: II	
1	Course Code	MPS 116	
2	Course Title	Power System Reliability Assessment	
3	Credits	3	
4	Contact Hours (L-T-P)	3-1-0	
	Course Status		
5	Course Objective	 Objective of the course is to apply the knowledge of study of probability analysis to evaluate the reliability of powe The concepts of reliability function, network modelling, a frequency ad duration technique will be discussed to sig for improving reliability in generation, interconnected ar systems 	r system. nd concept of nificant depth
6	Course Outcomes	On successful completion of this course students will be able to CO1: evaluate reliability functions and probability distributions CO2: demonstrate network modelling and to evaluate various sy CO3. Design and evaluate the generation system model CO4: employ equivalent assistance unit method for reliability eva connected system CO5: discuss the elementary concepts for reliability evaluation o system	aluation of inter-
7	Course Description	This course gives an introduction to the main principles and objest system reliability analysis: Basic terms and definitions, application methodologies for contingency analysis and reliability analysis, remodels, reliability indicators and main results such as interruption impact. The following topic are discussed : reliability analysis of the distribution systems, analysis of time dependencies and interrupt protection system reliability and impact on reliability of supply.	ns, overview of eliability ons and societal ransmission and
8		•••••••••••••••••••••••••••••••••••••••	CO Mapping
	Unit 1	Review of Probability Theory	
	A	Probability concepts, rules for combining probability, probability distributions.	CO1
	В	Random variables, density and distribution functions.	CO1
	С	Mathematical expectations, variance and standard deviation.	CO1
	Unit 2	Basic Reliability Evaluation	1
	A	General reliability functions, probability distributions in reliability evaluation.	CO2
	В	Network modeling and evaluation of series, parallel, series – parallel and complex systems, cut-set method, tie-set method,	CO2

	discrete Markov	discrete Markov chains, continuous Markov process.						
С	Concept of freq	Concept of frequency and duration technique, application to						
		olems, approxi	mate system reliability evaluation					
	methods.							
Unit 3	Generation Sys	tem Reliability	,					
А	Generation syst	em models, ca	pacity outage table, recursive	CO3				
	algorithm.							
В	Loss of load indices, inclusion of scheduled outages, load							
	forecast uncert	ainty, loss of er	nergy indices.					
С			energy limited systems, reliability	CO3				
		evaluation, frequency and duration method.						
Unit 4	Interconnected		-					
А		•	vo inter-connected systems, effect	CO4				
			nd number of tie lines.	CO4				
В	•	Equivalent assistance unit method for reliability evaluation of						
		inter-connected system.						
С		Elementary concepts of reliability evaluation of multi-connected						
	systems, composite system reliability.							
Unit 5		Distribution System Reliability						
А	•	Basic technique and application to radial systems, customer-						
		oriented indices, load and energy indices.						
В		Effect of lateral distributor protection, effect of disconnects						
		effect of protection failures, effect of load transfer.						
С		Meshed and parallel networks, approximate methods, failure						
		modes and effects analysis, inclusion of scheduled maintenance, temporary and transient failures, inclusion of						
	weather effects							
Mode of	Theory							
examinatio								
Weightage	CA	MTE	ETE					
Distribution	30%	20%	50%	1				
Text book/s				1				
		R. Billinton and R.N.Allan, "Reliability Evaluation of Power Systems", Pitman Advanced Publishing Program						
Other	-	1. R.Billinton and R.N.Allan, "Reliability Evaluation of						
References			Concepts and Techniques", Pitman					
	-	ed Publishing F						
		2. J.Endrenyi, "Reliability Modeling in Electric Power						
		•	Systems", John Wiley & Sons.					

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4
CO116.1	2	-	-	1	1	-	-	-	1	1	2	2
CO116.2	2	-	-	-	1	1	-	-	2	1	1	2
CO116.3	2	2	-	2	1	-	-	-	2	2	1	1
CO116.4	2	-	-	1	1	-	-	-	2	2	2	2
CO116.5	3	1	3	2	3	1	-	-	3	2	3	2

Prepared by: Department of EEE

Sc	hool: SET	Batch : 2019-21						
Pr	ogram: M.	Current Academic Year: 2019-21						
Te	ech.							
Br	anch: EEE	Semester: II						
1	Course Co	de MPS117						
2	Course Titl	e Power System Operation and Control						
3	Credits	4						
4	Contact	3-1-0						
	Hours							
	(L-T-P)							
	Course	Compulsory						
	Status							
	Course	Learn modern numerical techniques and analytical methods for deal	ing with and					
5	Objective	solving operation-related problems in electric power systems						
		After the completion of course student will be able to						
		CO1: explore the concept of automatic generation control.						
		CO2: apply the modes of excitation systems and exercises voltage co						
	Course	CO3: employ incremental cost curve and penalty factor for economic operation.						
6	Outcomes	CO4: plan unit commitment for optimal operation.						
		CO5: evaluate power system security and methods of improvement. CO6: apply mathematical and engineering fundamentals required to control and						
		operation of power system.						
		operation of power system.						
		This course aims to convince the student that constancy of frequence	This course aims to convince the student that constancy of frequency and voltage are					
		the primary health indicator of the power system for maintaining the real and reactive						
7	Course	power balance in systems. The concepts of economic load dispatch and unit commitment are also given in the course. The concept of close coordination between						
	Description							
		thermal and hydro power plant to meet the load demand has been included in the						
		course.						
8	Outline syl	labus	CO Mapping					
	Unit 1	Economic Dispatch of Thermal Units						
	А	Economic dispatch problem with and without line losses	CO3, CO6					
	В	Solution methods-lambda-iteration technique, gradient search and	CO3, CO6					
		Newton's method						
	С	Optimal power flow method	CO3, CO6					
	Unit 2	Unit Commitment						
	A	Unit Commitment problem, startup and shutdown cost	CO4, CO6					
	В	Thermal unit constraints, hydro-constraints and other constraints	CO4, CO6					
	С	Solution methods-priority-list and dynamic programming	CO4, CO6					
	Unit 3	Hydro-Thermal coordination						
	А	Long term and short-term hydro-thermal scheduling problem	CO6					
	В	Solution by gradient method	CO6					
	С	Pumped storage hydro-plant scheduling pumped storage hydro-plant	CO6					

	scheduling						
Unit 4	Power System S						
Α	Security analysis	CO5, CO6					
В	Contingency and	alysis methods		CO5, CO6			
С	Contingency sel	ection		CO5, CO6			
Unit 5	Load Frequency	and Excitation Cor	ntrol				
А	Generator mode	el, load model, prim	e-mover model, governor model, tie-	CO1, CO2, CO6			
В	-		gle area, inter-connected areas, two-area load frequency control	CO1, CO2, CO6			
С	Types of excitati	Types of excitation control, Reactive power control and voltage collapse					
Mode of examina tion	Theory						
Weighta	CA	MTE	ETE				
ge Distribut ion	30%	20%	50%				
Text book*	Allen. J. Wood a and Control",Joh						
Other Referen ces	 P.Kundur Publishe Olle.I.Elge Tata Mc Edition 2 						

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4
CO117.1	2	-	-	-	-	-	-	-	1	-	-	3
CO117.2	2	2	2	2	2	-	-	-	2	1	-	1
CO117.3	3	3	3	3	-	-	-	-	3	3	1	1
CO117.4	3	3	3	3	-	-	-	-	3	3	1	1
CO117.5	2	2	3	3	-	-	-	-	3	3	3	1
CO117.6	3	1	1	1	-	-	-	-	2	1	-	2

Prepared by: Department of EEE

School: SET		Batch : 2019-21							
Pro	gram: M.Tech	Current Academic Year: 2019-21 Semester: I/II							
Bra	nch: EEE								
1	Course Code	MPS121							
2	Course Title	Smart Power Grid and Micro-Grid							
3	Credits	3							
4	Contact	3-0-0							
	Hours								
	(L-T-P)								
	Course Status	Departmental Elective							
5	Course	1. To understand the concepts of smart power grid and r	nicro grid						
	Objective	2. To acquire in depth knowledge of smart distribution, distribution							
	-	automation, smart transmission and substation automation							
		3. To identify various components of smart grid and mic	cro grid						
		4. To apply principles of automation to transmission and	-						
		5. To design smart micro grid for a given application	dastribution						
		5. To design smart micro grid for a given application							
6	Course	CO1: To understand concept, motivation and benefits of Sm	art Power Grid						
U	Outcomes	CO2: To develop knowledge of demand-side management as a tool of							
		smart distribution							
		CO3: to design advanced metering infrastructure for Distribution	ution						
		Automation							
		CO4: To design AC, DC and hybrid micro grids							
		CO5: To design phasor measurement and develop wide area	monitoring						
		system using PMU							
7	Course	The course deals with the concept of smart power grid and in							
	Description	depth study of its its various components, namely smart							
		distribution automation and management, advanced metering infrastrue							
		, smart micro grid, smart transmission and substation automa	ation.						
8	Outline syllabu	S	CO Mapping						
	Unit 1	Introduction to Smart Power Grid (4 hours)							
	А	Traditional power grid, Smart power grid (or smart grid)	CO1						
		concept and objectives							
	В	Benefits of smart power grid, traditional-grid and smart-	CO1						
		grid comparison							
	С	Stake-holders in smart-grid development, Smart grid	CO1						
		solutions.							
	Unit 2	Smart Distribution							
	А	Demand-side management: Energy efficiency, time of use	CO2						
		and spinning reserve							
	В	Demand response: Market driven DR and operation-driven	CO2						
	1	DR, incentive-based DR and TOU-based rates DR							

	С	Distributed concretion Energy storage Use of plugged CO2	1
	C	Distributed generation, Energy storage, Use of plugged CO2 electric and hybrid electric vehicles	
	Unit 3	Distribution Automation and Management	
	A A	Overview of distribution system, Components of DA:	CO3
	A	customer automation, feeder automation and substation	005
		automation, Distribution control centre (DCC)	
	В	Distribution management system (DMS), Outage	CO3
	D	management system (OMS)- unplanned and planned	005
		outages, Asset management system (AMS), Customer	
		information system (CIS)	
	С	Meaning and benefits of advanced metering, Structure and	CO3
	C	components of AMI, AMI integration with DA, DMS and	005
		OMS.	
	Unit 4	Smart Microgrid	
	A	Definition, components and benefits of microgrid	CO4
	В	Types of micro grid: AC, DC and hybrid, Modes of	CO4
		operation: grid-connected and island modes	
	С	Meaning of smart micro grid, Micro grid operation and	CO4
		control	
	Unit 5	Smart Transmission and Substation Automation	
	А	Meaning and challenges of smart transmission	CO5
	В	Phasor measurement unit: concept, layout, components and	CO5
		applications, Wide area monitoring system: concept and	
		impact on EMS and DMS	
	С	Need of substation automation (SA), Technical issues of	CO5
		SA, SA architecture, SA function.	
	Mode of	Theory	
	examination		
	Weightage	CA MTE ETE	
	Distribution	30% 20% 50%	
	Text book/s*	1. Mini S. Thomas and John D. McDonald, Power	
		System SCADA and Smart Grids, CRC Press,	
		2015.	
	Other	1. Janak Eknayake at el., Smart Grid: Technology and	
	References	Applications, John Wiley and Sons, 2012	
		2. H. K. Verma, e-Monograph on "Smart – Grid",	
		www.profhkverma.info	

Page 29

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4
CO121.1	3	2	1	-	-	3	-	-	3	-	-	-
CO121.2	3	2	1	2	1	2	-	-	2	3	2	1
CO121.3	2	1	3	1	1	1	-	-	2	2	2	2
CO121.4	2	1	3	2	1	2	-	-	1	3	2	2
CO121.5	3	2	3	1	2	1	-	-	3	2	3	3

Prepared by: Department of EEE

Sch	ool: SET	Batch : 2019-21							
Pro	gram: M.Tech	Current Academic Year: 2019-21							
Bra	nch: EEE	Semester: II							
1	Course Code	MPS123							
2	Course Title	Digital Relaying for Power Systems							
3	Credits	3							
4	Contact	3-0-0							
	Hours								
	(L-T-P)								
	Course Status								
5	Course	1. to understand the concept of digital protection and comput	ter relaying for						
	Objective	power system.							
		2. to acquire an in-depth knowledge on different generations	of protective						
		relays							
		3. to identify different components of a numerical relay							
		4. to apply discrete Fourier transform technique in Power Sy	stem						
		Protection							
		5. to design and develop relay algorithms for protection of pe	ower system						
		apparatus							
6	Course	CO1: to compare, analyse the advantages and disadvantages	of all the three						
0	Outcomes	generations of protective relay and also identify the different							
	Outcomes	of a numerical relay	components						
		CO2: to develop relay algorithms based on relaying signals							
		CO3: to develop algorithm for digital protection of generator							
		CO4: to develop algorithm for digital protection of transform							
		CO5: to apply ANN for protection of transmission line and power							
		transformer							
		CO6: to design and evaluate protection algorithms for prote	ction of any						
		power system component							
7	Course	The first and foremost driving force for advances in relaying							
	Description	need to improve reliability. In turn, this implies increase in d							
		as well as security. This need to improve reliability pro	-						
		development of digital relaying. In this course, the students	will have an						
		exposure to the three generations of protective relays.	1 1/						
		Throughout the course, students will have an opportunity to							
		different numerical techniques for protection of generators, t and transmission lines.	ransformers						
		and transmission lines.							
8	Outline syllabu	<u> </u>	CO Mapping						
0	Unit 1	Introduction and Architecture of Digital Relay							
	A	Three generations of protective relays: electromechanical,	CO1						
		static and digital/numerical							

	В	architecture an	d elements of	a digital relay	CO1					
	С			gement relays and IED Relays	CO1					
	Unit 2			hematical Basis						
	А	Relay Algorith	nms based on p	oure sinusoidal relaying	CO2 & CO6					
		signals, distort	ed relaying sig	gnals and differential equation						
		representation								
	В	Z transform, st	ine and cosine	Fourier series, Fourier	CO2 & CO6					
		Transform and	Transform and DFT							
	С	Walsh function	ns, digital filter	rs, windows and windowing.	CO2 & CO6					
	Unit 3	Digital Relayi								
	А	Various protect	tion functions:	: differential, stator earth fault,	CO3 & CO6					
			loss of excitation and reverse power protection							
	В	Abnormal free	CO3 & CO6							
			cy protection,	over and under voltage						
		protection								
	С			ction of generator	CO3 & CO6					
	Unit 4	Digital Relayi								
	А			in transformer, basic	CO4					
				er differential protection,						
	В	-	lifferential pro	tection during magnetizing	CO4					
		inrush current								
	С	Numerical pro			CO4					
	Unit 5			Numerical Protection	CO5					
	А	• •		odels, Artificial Neural	CO5					
				and Consideration						
	В			mission line protection	CO5					
	С	ANN based po	ower transform	er protection						
	Mode of	Theory								
	examination			1						
	Weightage	CA	MTE	ETE						
	Distribution	30%	20%	50%						
	Text book/s*			ames S. Thorp, "Computer						
		-	-	Systems", John Wiley and Sons						
		Inc, Ne								
		2. Badri ra								
		Protect								
\mid	0.1	-		td, New Delhi.						
	Other			Maheswari and Nilesh G.						
	References	Chotha	ini, "Protection	and Switchgear", Oxford.						

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4
CO123.1	1	2	3	-	-	-	-	-	1	2	2	1
CO123.2	2	1	2	2	1	-	-	-	-	2	2	1
CO123.3	-	-	3	2	-	-	-	-	2	1		3
CO123.4	2	1	1	2	-	-	-	-	1	2	1	2
CO123.5	1	2	2	3	-	-	-	-	-	2	1	-
CO123.6	2	2	2	`1	-	-	-	-	-	1		3

Prepared by: Department of EEE

Sc	:hool: SET		Batch : 2019-21						
Pr	rogram: M. 1	「ech.	Current Academic Year: 2019-21						
Br	ranch: EEE		Semester: I/II						
1	Course Coo	le	MPS124						
2	Course Title	e	FACTS Devices and Systems						
3	Credits		3						
4	Contact Ho (L-T-P)	ours	3-0-0						
	Course Stat	tus	Department Elective						
5	Course Obj	ective	To impart the students with various FACTS devices which are used for proper operation of existing AC system more flexible in normal and abnormal conditions						
5	5 Course Outcomes		After completion of the course, the student will be able to CO1: Understand the operations of different FACTS devices. CO2: Select the controllers for different Contingencies. CO3: Analyze the different FACTS devices in different stability conditions. CO4. Select an appropriate FACTS device for a particular application						
7	Course Descriptior	1	FACTS is the acronym for Flexible AC Transmission Systems and refers to a group of resources used to overcome certain limitations in the static and dynamic transmission capacity of electrical networks. The main purpose of these systems is to supply the network as quickly as possible with inductive or capacitive reactive power that is adapted to its particular requirements, while also improving transmission quality and the efficiency of the power transmission system. FACTS Devices course is designed to provide in-depth knowledge to provide actual hardware solution of the FACTS.						
8	Outline syll	labus		CO Mapping					
	Unit 1	Power	transmission control						
	А	Power transm	flow control, steady state and dynamic limits of power ission	CO1					
	В	Transm	ission line compensation	CO3					
	С	Objecti	ves of FACTS devices	CO1					
	Unit 2		Controller						
	A	Shunt c	onnected controllers, series connected controllers	CO2					
	В	Combir	ed shunt and series connected controllers	CO2					
	С	Voltage	/oltage-source converters CO2						
	Unit 3		nd Series Compensation						
	А	Principa	al of operation and configuration of SVC and STATCOM	CO1,CO3, CO4					
	В		V-Q characteristics, operation with unbalanced system,	CO1,CO3, CO4					
			tions of SVC and STATCOM						
	С		al of operation and configuration of TCSC and SSSC	CO1,CO3, CO4					
	Unit 4		power flow controller						
	А		perating principles	CO1,CO3, CO4					

В	Characteristics	of UPFC		CO1,CO3, CO4					
С	Dynamic perfor	mance, steady state	e analysis and control	CO1,CO3, CO4					
Unit 5	Stability analys	is	÷						
А	Oscillation stab	ility analysis		CO3					
В	Transient stabil	ity control		CO3					
С	Protection issue	es with FACTS devic	e	CO3					
Mode of examinat ion	Theory								
Weightag	CA								
e Distributi on	30%	20%	50%						
Text book*	-		erstanding FACTS: concepts and sion systems", Wiley IEEE Press, 1999						
Other Referenc es	1. Acha E., Fuer C., "FACTS mod Sons Ltd., Engla 2. Song Y. H. an Power Series, II 3. Mathur R.M. Electric Transm								

COURSE ARTICULATION MATRIX:

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4
CO123.1	2	2	1	1	1	-	-	-	2	1	1	2
CO123.2	1	3	3	1	2	-	-	-	3	2	1	2
CO123.3	2	1	1	2	1	-	-	-	2	1	1	2
CO123.4	1	3	3	1	3	-	-	-	2	3	3	1

Sch	ool: SET	Batch : 2019-21					
Pro	gram: M.Tech	Current Academic Year: 2019-21					
Bra	nch: EEE	Semester: I/II					
1	Course Code	MPS125					
2	Course Title	Electrical Drives					
3	Credits	3					
4	Contact	3-0-0					
	Hours						
	(L-T-P)						
	Course Status	Departmental Elective					
5	Course	1. Introduction to different types of drives and applicatio	ns in various				
	Objective	industries.					
		2. To know the characteristics of various motors and los	ads.				
		3. To understand the modes of operation of a drive in var	rious				
		applications					
		4. To enable the students identify the need and choice for various					
		drives.					
		5. To acquire the knowledge of different speed control m	ethods in a c				
		motors	ethous in u.e				
		motors					
6	Course	CO1: Understand the characteristics of dc motors and induct	ion motors.				
	Outcomes	CO2: Understand the principles of speed-control of dc motor	s and				
		induction motors.					
		CO3: Understand the power electronic converters used for d	c motor and				
		induction motor speed control	e motor and				
		-	a antrol main a				
		CO4: Acquire the knowledge about operation of d.c motor speed of	control using				
		converters and choppers					
		CO5: Identify the use of drives in industrial applications					
7	Course	This course introduces the concept of control of electric moto	ore for various				
1	Description	types of mechanical loads. DC motor control (both steady sta					
		dynamic), and steady state torque and speed control of ac mo					
		emphasized.					
		· ·					
8	Outline syllabu	S	CO Mapping				
	Unit 1	DC motor characteristics (5 hours)					
	А	Review of emf and torque equations of DC machine,	CO1				
		review of torque-speed characteristics of separately excited					
		dc motor					
	L		l				

	P			• • •	001				
	В			e with armature voltage, naracteristics, operating point,	CO1				
	С	armature volta	ge control for v	varying motor speed, flux	CO1				
		weakening for	high speed ope	eration					
	Unit 2	Chopper fed]	DC drive (5 ho	ours)					
	A			ty ratio control, chopper fed	CO2				
		dc motor for s		, 11					
	В	steady state op	eration of a ch	opper fed drive, armature	CO2				
		current wavefor	orm and ripple,						
	С			tor and chopper, efficiency of	CO2				
		dc drive, smoo	th starting						
	Unit 3	Multi-quadra							
	А			erating modes operation of a	CO3				
		separately exci							
	В			c machine; single-quadrant,	CO3				
		two-quadrant a							
	С			ulti-quadrant chopper fed dc	CO3				
			drive, regenerative braking Closed-loop control of DC Drive (6 hours)						
	Unit 4								
	А	Control structu	CO4						
	P	speed loop,	CO.4						
	В			- dynamic equations and	CO4				
			-	of chopper as gain with					
	С	switching dela		ntroller design, current	CO4				
	C			esign, speed controller	04				
		specification a		esign, speed controller					
	Unit 5	Induction mo		stics (6 hours)					
	A			quivalent circuit and torque-	CO5				
		speed characte		furtuent encut and torque	000				
	В			ve with (i) applied voltage, (ii)	CO5				
				plied voltage and frequency					
	С	<u> </u>		of fan and pump loads,	CO5				
				operation, flux weakening					
		operation.		5					
	Mode of	Theory							
	examination								
	Weightage								
	Distribution	30%							
	Text book/s*	1. G. K. Dube							
		Drives", Prent							
		2. R. Krishnan							
		Analysis and C	Control", Prent	ice Hall,					
_									

Page 37

	2001.	
Other References	 G. K. Dubey, "Fundamentals of Electrical Drives", CRC Press, 2002. W. Leonhard, "Control of Electric Drives", Springer Science & Business Media, 2001. 	

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4
CO125.1	2	1	-	-	-	-	-	-	1	2	1	1
CO125.2	1	2	2	-	-	-	-	2	2	2	-	1
CO125.3	2	2	2	-	2	-	-	-	-	-	-	1
CO125.4	2	2	-	-	-	-	-	-	-	-	-	1
CO125.5	1	1	-	-	-	-	-	-	-	-	1	-

Prepared by: Department of EEE

Scho	ool: SET	Batch : 2019-21
	gram: M.Tech	Current Academic Year: 2019-21
Brai	nch: EEE	Semester: I/II
1	Course Code	EEE007
2	Course Title	Power Quality
3	Credits	3
4	Contact	3-0-0
	Hours	
	(L-T-P)	
	Course Status	Departmental Elective
5	Course	1. Understand the various power quality phenomenon, their origin and
	Objective	monitoring and mitigation methods.
	_	2. Analyze the effects of various power quality phenomenon in various
		Equipments
		3. Analyze the different measuring and monitoring equipments for power
		quality issues
		4. Analyse the different filters, conditioners or protecting equipments used
		for mitigation of power quality problems
		for mitigation of power quarty problems
6	Course	CO1. Un derstand the various terminals size used in new or sublity studies
6	Course	CO1: Understand the various terminologies used in power quality studies
	Outcomes	in order to define and characterize its features
		CO2: Analyse the different methods for mitigation of sags and
		interruptions.
		CO3:Analyse the various sources of overvoltage in power distribution
		system
		CO4: Analyse the effects of harmonics in power system equipments.
		CO5: Analyze and compare different measurement and monitoring
		equipment for power quality issues
7	Course	The course addresses various issues related to power quality in power
	Description	distribution systems. Power systems are ideally designed to operate three-
		phase balanced load at fundamental frequency. When there is deviation
		from these ideal conditions, the efficiency of power system comes down.
		This is due to increased losses, heating of electric machines, transformers
		and appliances. These aspects will be explained along with practical
		examples. In this course, the consequences of power quality problems will
		be discussed and an effort will be made to understand their mitigation
		using filters, power conditioners and protection equipments.
8	Outline syllabu	
0	Outline synabu	s CO Mapping

Unit 1		on to Power		
А			overloading, under vo	oltage, CO1
		interruption,		
В			orm distortion, total h	
~	distortion			CO1
С			pment manufacturers	s associations CO1
	(CBEMA			
Unit 2		ags and Inte		
А			erruptions, estimating	
	performat			CO2
В			nating the sag severit	
0	of voltage			CO2
С		1	ors, static transfer sw	itches and CO2
	fast transf	er switches.		
TT I (A				
Unit 3	Overvolta			
А			, capacitor switching	
		nance, mitigat	ion of voltage swells	, surge
	arresters,			
В			conditioners, lightnin	g protection, CO3
		line arresters		
С		analysis tools	for transients	CO3
Unit 4	Harmonic			
А			tage and current disto	
			nic sources from con	imercial and
	industrial l			
В	-		es; power system resp	oonse CO4
		tics, resonanc		
С			uation, devices for co	
		· •	sive filters, active filt	ers, IEEE and
	IEC standa			
Unit 5		ality Monitor	0	
А		-	ns, Power line disturb	
			neasurement equipm	
В	harmonic /	spectrum ana	lyzer, flicker meters,	disturbance CO5
	analyzer			
С	application	ns of expert sy	stem for power quali	ty CO5
	monitoring	5.		
Mode of	Theory			
examination				
Weightage	CA	MTE	ETE	
0 0	30%	20%	50%	
Distribution	5070			

	 Beaty, 'Electrical Power Systems Quality' McGraw Hill, 2003 2. Arrillaga J.,Simith B.C. ,Watson N.R. and Wood A.R. "Power System Harmonics Analysis" John Willey &Sons 1997 	
Other References	 Wakipen G.J., "Power System Harmonics : Fundamentals ,Analysis and Filter design" Springer,2001 	

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4
CO007.1	2	1	1	2	1	-	-	-	1	-	-	2
CO007.2	1	2	2	1	2	-	-	-	2	1	-	1
CO007.3	1	2	1	-	-	-	-	-	-	-	-	-
CO007.4	2	1	2	1	-	-	-	-	-	-	-	-
CO007.5	2	1	1	1	-	-	-	-	-	-	-	-

Prepared by: Department of EEE

Scho	ool: SET	Batch : 2019-21	
Prog	gram: M.Tech	Current Academic Year: 2019-21	
Brar	nch: EEE	Semester: I	
1	Course Code	MPS152	
2	Course Title	Power System Modelling & Simulation Lab	
3	Credits	1	
4	Contact Hours (L-T-P)	0-0-2	
	Course Status	Compulsory	
5	Course Objective	 To allow students to practically verify several concepts an learned in power system modelling and analysis. To develop hands-on experience of how certain procedur system operation are carried out To carry out system studies using state of the art power s software to assess system operation in steady state and conditions. To promote teamwork among students and effective com skills 	es of power ystems analysis under faulted
6	Course Outcomes	On successful completion of this course students will be able to CO1: Analyze the power system data for load-flow and fault stud CO2: Apply computational methods for large scale power system CO3 :Apply software for power system industry	
7	Course Description	This lab course includes ten experiments to study various aspect systems: load flow data preparation and system study; system an symmetrical and unsymmetrical faults and state estimation.	•
8	Outline syllabus		CO Mapping
	Unit 1		
	А	Simulation of swing Equation using Simulink	CO1
	В	Formation of Z-bus matrix of a power system	CO1
	С	Formation of Ybus	CO1
	Unit 2	Three-Phase Load Flow	
	А	Formation of Ybus using Sparsity Technique	CO1
	В	Load flow study of a 3-phase power system using Gauss-Seidel	CO1
	С	Load flow study of a 3-phase power system using NR	CO1
	Unit 3	Load Flow with HVDC link	
	А	Modelling of HVDC link	CO2
	В	DC load flow study	CO2
	Unit 4	Short Circuit Studies For Unbalanced Network	

	1			
А	Simulation of sy	mmetrical fault		CO2
В	Simulation of U	nsymmetrical fa	ult	CO2
С	Simulation of s	ymmetrical fault	in presence of compensator	CO2
Unit 5	State Estimatio	n		
А	State estimatio	n of a power sys	item	CO3
В	State estimatio Square method	• •	tem using Weighted Least	CO3
Mode of examination	Theory			
Weightage	CA	MTE	ETE	
Distribution	30%	20%	50%	
Text book/s*	Arrillaga J. and Systems", John		omputer Analysis of Power	
Other References	CRC Pro 4. Anders	ess.	Aided Power System Analysis", sis of Faulted Power Systems",	

COURSE ARTICULATION MATRIX:

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4
CO152.1	2	1	-	1	1	1	2	2	1	1	2	2
CO152.2	2	1	-	-	1	-	-	-	2	1	1	2
CO152.3	2	2	-	2	1	-	2	2	2	2	1	1

Sch	ool: SET	Batch: 2019-21	
Pro	gram: M. Tech.	Current Academic Year: 2019-21	
Bra	nch: EEE	Semester: II	
1	Course Code	MPS153	
2	Course Title	Power System Control and Protection Lab	
3	Credits	2	
4	Contact Hours (L-T-P)	0-0-4	
	Course Status	Compulsory	
5	Course Objective	Learn modern numerical techniques and analytical methods with and solving operation and protection related problems power systems	U
6	Course Outcomes	 After the completion of course student will be able to CO1: explore the concept of automatic generation control. CO2: apply the modes of excitation systems and exercises control. CO3: employ incremental cost curve and penalty factor for operation. CO4: plan unit commitment for optimal operation. CO5: evaluate power system security and methods of impri CO6: analyse power system faults for balanced and unbala conditions. CO7: compare the protection techniques used for protection power system components 	voltage or economic rovement. inced
7	Course Description	This course aims to convince the student that constancy of a voltage are the primary health indicator of the power seminationing the real and reactive power balance in systems. of economic load dispatch and unit commitment are also gi course. The concept of close coordination between thermal power plant to meet the load demand has been included in t	system for The concepts ven in the and hydro
8			
	Unit 1	Practical related to economic load dispatch and Unit Commitment	
	А	To perform economic load dispatch without considering losses using MATLAB	CO3
	В	To perform economic load dispatch with considering losses using MATLAB	CO3
	С	To solve unit commitment method using priority list scheme in MATLAB	CO4
	Unit 2	Practical related to load frequency control and voltage	

	control			
А			v control model in MATLAB	CO1
В			or in most optimal location and voltage profile using	CO2
	MATLAB/P		voltage prome using	
С			or in most optimal location and	CO2
			power transfer capability using	
	MATLAB/P			
Unit 3	Practical re	lated to pow	ver system security and	
	excitation c			
А	To design D	C/AC excitat	tion control model in PSCAD.	CO2
В			n control model in PSCAD.	CO2
C			x of a system using contingency	CO5
	analysis in N			
Unit 4		lated to faul		
А			ground in PSCAD and to	CO6
			ent at different locations	
В			n PSCAD and to measure voltage	CO6
		at different lo		
C			o ground in PSCAD and to	CO6
			nt at different locations	
Unit 5		lated to rela		
A	Principle of	various Elect	tromagnetic relays and their	CO7
D	construction			007
В			, differential and distance relays	CO7
С		erating chara	tion to static and	CO7
C			processor based) relays and	01
			vice(IED) relays	
Mode of	Practical		(100) 10m/5	
examination	1 Iuciliui			
Weightage	CA	MTE	ETE	
Distribution	60%	0%	40%	
Text book/s*			e F. Wollenberg, "Power	
			d Control", John Wiley & Sons,	
	Inc., 2003.	1	· · · · ·	
Other		ındur, "Powe	r System Stability and	
References			w Hill Publisher, USA, 1994.	
			ectric Energy Systems Theory	
	Am L	ntroduction"	Tata McGraw Hill Publishing	
	Anı	infounction		

COURSE ARTICULATION MATRIX:

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4
CO153.1	2	-	-	-	-	-	-	-	1	-	-	3
CO153.2	2	2	2	2	2	-	-	-	2	1	-	1
CO153.3	3	3	3	3	-	-	-	-	3	3	1	1
CO153.4	3	3	3	3	-	-	-	-	3	3	1	1
CO153.5	2	2	3	3	-	-	-	-	3	3	3	1
CO153.6	3	2	-	-	-	-	-	-	2	2	-	2
CO153.7	3	2	-	-	-	-	-	-	2	2	-	2

SCI	1001: SET	Batch : 2019-2021	
Pro	ogram: M.Tech	Current Academic Year: 2019-2021	
Bra	anch: EEE	Semester:	
1	Course Code	MPS129	
2	Course Title	Distributed Generation Technology	
3	Credits	3	
4	Contact Hours (L-T-P)	3-0-0	
	Course Status	Elective	
5	Course Objective	To introduce the concept of distributed generation, microgrids, electric ve energy storage. To familiarize the students with renewable generation system modelling,	
		integration issues. To impart an understanding of economics, policies and technical regulation	_
6	Cauraa	integration	
6	Course Outcomes	CO1 : Analyse the concept and importance of distributed generation. CO2: Understand different renewable energy sources, micro-grid and sto Devices.	rage
		CO3: Evaluate the technical impact of DG in power system CO4: Analyze the operation and control strategies for grid connected and	l off-grid
		System.	
7	Course	System. CO5: Evaluate the effect of DG placement in the existing system. This syllabus gives an overview of distributed energy resources, photo	ovoltaic system
7	Course Description	CO5: Evaluate the effect of DG placement in the existing system.	ples of control of ms, installation
	Description	CO5: Evaluate the effect of DG placement in the existing system. This syllabus gives an overview of distributed energy resources, photosmall hydro, fuel cells, energy storage technologies; wind turbines, Princi distributed generation systems; Electric power distribution syste interconnection and integration; Economic and financial aspects of distributed the regulatory environment and standards.	ples of control c ms, installation puted generation
	Description Outline syllabu	CO5: Evaluate the effect of DG placement in the existing system. This syllabus gives an overview of distributed energy resources, photosmall hydro, fuel cells, energy storage technologies; wind turbines, Princi distributed generation systems; Electric power distribution syste interconnection and integration; Economic and financial aspects of distributed the regulatory environment and standards.	ples of control c ms, installation puted generation CO Mapping
	Description	CO5: Evaluate the effect of DG placement in the existing system.This syllabus gives an overview of distributed energy resources, photosmall hydro, fuel cells, energy storage technologies; wind turbines, Princidistributed generation systems; Electric power distribution systeinterconnection and integration; Economic and financial aspects of distributedthe regulatory environment and standards.Introduction to Distributed GenerationConcept of DG and, its definition, Current scenario in distributed	ples of control c ms, installation puted generation
	Description Outline syllabu Unit 1	CO5: Evaluate the effect of DG placement in the existing system. This syllabus gives an overview of distributed energy resources, photo small hydro, fuel cells, energy storage technologies; wind turbines, Princi distributed generation systems; Electric power distribution syste interconnection and integration; Economic and financial aspects of distributed the regulatory environment and standards. INS Introduction to Distributed Generation Concept of DG and, its definition, Current scenario in distributed generation	ples of control c ms, installation buted generation CO Mapping CO1
	Description Outline syllabu Unit 1 A	CO5: Evaluate the effect of DG placement in the existing system.This syllabus gives an overview of distributed energy resources, photosmall hydro, fuel cells, energy storage technologies; wind turbines, Princidistributed generation systems; Electric power distribution systeinterconnection and integration; Economic and financial aspects of distributedthe regulatory environment and standards.Introduction to Distributed GenerationConcept of DG and, its definition, Current scenario in distributed	ples of control c ms, installation outed generation CO Mapping CO1 CO1
	Description Outline syllabut Unit 1 A B C	CO5: Evaluate the effect of DG placement in the existing system. This syllabus gives an overview of distributed energy resources, photo small hydro, fuel cells, energy storage technologies; wind turbines, Princi distributed generation systems; Electric power distribution syste interconnection and integration; Economic and financial aspects of distribute the regulatory environment and standards. Is Introduction to Distributed Generation Concept of DG and, its definition, Current scenario in distributed generation Need for distributed generation Advantage and limitation of DG	ples of control c ms, installation buted generation CO Mapping CO1 CO1 CO1
	Description Outline syllabu Unit 1 A B C Unit 2	CO5: Evaluate the effect of DG placement in the existing system. This syllabus gives an overview of distributed energy resources, photosmall hydro, fuel cells, energy storage technologies; wind turbines, Princidistributed generation systems; Electric power distribution syste interconnection and integration; Economic and financial aspects of distribute the regulatory environment and standards. Introduction to Distributed Generation Concept of DG and, its definition, Current scenario in distributed generation Need for distributed generation Advantage and limitation of DG Renewable based Distributed generation	ples of control c ms, installation buted generation CO1 CO1 CO1 CO1
	Description Outline syllabu Unit 1 A B C Unit 2 A	CO5: Evaluate the effect of DG placement in the existing system.This syllabus gives an overview of distributed energy resources, photosmall hydro, fuel cells, energy storage technologies; wind turbines, Princidistributed generation systems; Electric power distribution systeinterconnection and integration; Economic and financial aspects of distribthe regulatory environment and standards.ISIntroduction to Distributed GenerationConcept of DG and, its definition, Current scenario in distributedgenerationAdvantage and limitation of DGRenewable based Distributed generationWind power plant	ples of control of ms, installation buted generation CO1 CO1 CO1 CO1 CO1 CO1 CO1
	Description Outline syllabu Unit 1 A B C Unit 2	CO5: Evaluate the effect of DG placement in the existing system. This syllabus gives an overview of distributed energy resources, photosmall hydro, fuel cells, energy storage technologies; wind turbines, Princidistributed generation systems; Electric power distribution syste interconnection and integration; Economic and financial aspects of distribute the regulatory environment and standards. Introduction to Distributed Generation Concept of DG and, its definition, Current scenario in distributed generation Need for distributed generation Advantage and limitation of DG Renewable based Distributed generation	ples of control of ms, installation buted generation CO1 CO1 CO1 CO1
	Description Outline syllabut Unit 1 A B C Unit 2 A B C Unit 2 A B C	CO5: Evaluate the effect of DG placement in the existing system. This syllabus gives an overview of distributed energy resources, photosmall hydro, fuel cells, energy storage technologies; wind turbines, Princidistributed generation systems; Electric power distribution systeminterconnection and integration; Economic and financial aspects of distribute the regulatory environment and standards. Is Introduction to Distributed Generation Concept of DG and, its definition, Current scenario in distributed generation Need for distributed generation Advantage and limitation of DG Renewable based Distributed generation Wind power plant Solar power plant Small hydro other alternate DG	ples of control of ms, installation buted generation CO1 CO1 CO1 CO1 CO2 CO2 CO2 CO2 CO2
	Description Outline syllabu Unit 1 A B C Unit 2 A B C Unit 2 Unit 3	CO5: Evaluate the effect of DG placement in the existing system. This syllabus gives an overview of distributed energy resources, photosmall hydro, fuel cells, energy storage technologies; wind turbines, Princidistributed generation systems; Electric power distribution syste interconnection and integration; Economic and financial aspects of distribute the regulatory environment and standards. Is Introduction to Distributed Generation Concept of DG and, its definition, Current scenario in distributed generation Need for distributed generation Advantage and limitation of DG Renewable based Distributed generation Wind power plant Solar power plant Snall hydro other alternate DG Technical impacts of DG	ples of control of ms, installation outed generation CO1 CO1 CO1 CO1 CO2 CO2 CO2 CO2 CO2 CO3
	Description Outline syllabu Unit 1 A B C Unit 2 A B C Unit 2 A B C Unit 3 A	CO5: Evaluate the effect of DG placement in the existing system. This syllabus gives an overview of distributed energy resources, photosmall hydro, fuel cells, energy storage technologies; wind turbines, Princidistributed generation systems; Electric power distribution systee interconnection and integration; Economic and financial aspects of distribute the regulatory environment and standards. Is Introduction to Distributed Generation Concept of DG and, its definition, Current scenario in distributed generation Need for distributed generation Advantage and limitation of DG Renewable based Distributed generation Wind power plant Solar power plant Small hydro other alternate DG Technical impacts of DG Transmission systems, Distribution systems	ples of control of ms, installation outed generation CO1 CO1 CO1 CO1 CO2 CO2 CO2 CO2 CO2 CO3 CO3
7 8	Description Outline syllabu Unit 1 A B C Unit 2 A B C Unit 2 Unit 3	CO5: Evaluate the effect of DG placement in the existing system. This syllabus gives an overview of distributed energy resources, photosmall hydro, fuel cells, energy storage technologies; wind turbines, Princidistributed generation systems; Electric power distribution syste interconnection and integration; Economic and financial aspects of distribute the regulatory environment and standards. Is Introduction to Distributed Generation Concept of DG and, its definition, Current scenario in distributed generation Need for distributed generation Advantage and limitation of DG Renewable based Distributed generation Wind power plant Solar power plant Snall hydro other alternate DG Technical impacts of DG	ples of control of ms, installation outed generation CO1 CO1 CO1 CO1 CO2 CO2 CO2 CO2 CO2 CO3